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Introduction
During the last decade some important progress was achieved in the domain

of infinite dimensional analysis involving applications of coercive inequalities.
In particular the understanding of the ergodicity problem for stochastic dynam-
ics of large dimensional interacting systems has considerably improved. Besides
other things this contributed to better understanding the relations between
different descriptions which play a crucial role in statistical mechanics ; in par-
ticular the relation of equilibrium description by Gibbs measures and systems
out of equilibrium described by stochastic dynamics.

The intention of these lecture notes is to present a self consistent and rela-
tively complete introduction to this rapidly developing subject.

One can quickly introduce the problem which we shall consider as follows.
Given a Markov semi-group > 0, defined on a space C(H) of real-
valued continuous functions on a Polish space Q, one can ask the following two
questions:

(I) Is there an invariant measure for Pt, that is, a probability measure ~ on
S~ such that for every f E C(O)

= )

where Pt f denotes the image of f by Pt and stands for f 
(II) If yes, does Pt f converge towards and in which sense ? More precisely,

can we find a norm [ [ . [ on C(O) such that

- f~ ~ 03B3(t)f

with a defined on a dense subset and a rate 1(t) 0

independent of f. In general, [[ . [ is either the uniform norm or the norm of
for some p > 1.

Frequently, one can introduce Pt so that a given measure p (or a class of
measures) is Pt - invariant and then the question (II) becomes crucial.

One such situation appears in statistical mechanics. In this case the state

space n one considers is often an infinite product H = where M is a finite
set or a smooth compact finite dimensional Riemannian manifold. On such a

space, one is given an a priori family of conditional expectations Ex indexed by
the finite subsets X of~, where Ex integrates over variables i E X). Under
some mild hypotheses, it can be shown that there exists a probability measure
 on Q, so-called Gibbs measure, characterized by the following Dobrushin-

Lanford-Ruelle’s condition

= ) (0.0.1)
for every finite subset X of ~ and f E C(H). One can use these conditional
expectations to introduce a class of infinitesimal jump generators formally given
by
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= ~ (Ex+j f - f ), (0.0.2)

where X + j denotes the set {j + k, k E X} (see [28, 51, 67] and the references
therein). Naturally the measures  satisfying (0.0.1) are invariant for the associ-
ated Markov semi-groups = However, in general it is not clear that
the solutions of (0.0.1) are the only invariant measures of In ~28~, j51~ and .

[67], one finds sufficient conditions for to be uniformly ergodic and hence 
’

to have a unique invariant measure. In this set up, the conditional expectations
(Ex, X E often depend on some parameters (such as the temperature T or
the magnetic field h). As these parameters vary, the solutions of equation (0.0.1)
change as well as their properties. In [26] and later in [22] constructive condi-
tions were given to insure uniqueness of the solutions of (0.0.1) in terms of the
kernels and Ey+j associated with the single point sets (~ j }, j E and
the cubes with given finite size (Y + j, j E ?ld), respectively. These conditions
are known as the uniqueness conditions of Dobrushin and Dobrushin-Shlosman,
respectively. In general, the second one is valid in a broader domain of values
of the parameters.

Dobrushin-Shlosman’s uniqueness condition was used by Aizenman and Hol-
ley in [2] where they showed that a jump dynamics constructed as in (0.0.2) is
ergodic in the uniform norm with an exponential rate when the conditional
expectations Ex+j, j E ~, satisfy this condition. This result in particular
implies the ergodicity of the semi-group in L2 (~) and the existence of a spectral
gap for the spectrum of the self-adjoint operator in L2(~). Moreover, as
the quadratic forms associated with the generators constructed with other
finite sets Y are equivalent to that of ,C~X~, all the corresponding dynamics are
ergodic in L2 (~c) . .

Unfortunately, for many interesting models describing systems in a neigh-
bourhood of a "critical point", the size of the cubes for which Dobrushin-
Shlosman’s condition is satisfied grows to infinity when one approaches the
critical point. In particular, the Aizenman-Holley strategy fails even though
one can show that there exists a unique Gibbs measure satisfying (0.0.1). (In
some specific models such as ferromagnetic systems where the conditional expec-
tations preserve monotonicity properties this strategy was extended in a clever
way in [75] (Part I).)

To overcome these difficulties, a new clever strategy based on the use of
hypercontractivity was introduced in [59] and [60]. The main idea is to deduce
the uniform ergodicity from L2 (p) ergodicity and hypercontractivity. To this
end one first approximates the semi-group with another semi-group in finite
dimension. In finite dimension, one can bound uniform norms with L2 norms
by using the ultracontractivity property of the semi-group realized in unit time.
The price to pay for this is a large coefficient growing with the dimension of
the space which fortunately can be controlled thanks to the hypercontractivity
property.
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We recall that the hypercontractivity property allows us to bound the LP (p)
norm of Pt f by the Lq (~) norm of f for p = p(t) = 1 + and a constant
c E (0, oo). It looks rather unusual since p can be, for large times, much bigger
than q. This property was introduced first in the constructive quantum field
theory (see e.g. [93] and [48]). Similarly to the contractivity property, the
hypercontractivity allows an equivalent infinitesimal description given by the
following logarithmic Sobolev inequality 

cl~(f (-~.f )) + ~(,f 2) log ~(f 2) (0.0.3)
with a constant c E (0, oo) independent of a function f from the quadratic form
domain of ~C. The logarithmic Sobolev inequality was already formally consid-
ered in [39], but the equivalence of the hypercontractivity property and of (0.0.3)
was first proved in the seminal work [52] opening the door to further progress.
In this paper L. Gross also proved that the logarithmic Sobolev inequality has
a product property. He showed that this together with (0.0.3) for a uniform
measure on the two point set (proved in the same paper) imply the correspond-
ing inequality for a class of Gaussian measures. The first breakthrough which
tremendously increased the class of probability measures satisfying (0.0.3) was
due to Bakry and Emery who introduced in [6] a very nice sufficient condition.
Roughly speaking, this condition, when formulated in the context of a smooth
compact finite dimensional Riemannian manifold M, requires the positivity of
the Ricci curvature of M. When considered in the setting of a probability mea-
sure = on it necessitates that the smallest eigenvalue
of the Hessian of U is uniformly bounded below by a positive constant. One of
the first interesting applications of the Bakry-Emery condition was published in
[13] where it was used to establish the logarithmic Sobolev inequality for a wide
class of Gibbs measures on a product space over the unit sphere of dimension
N, N > 2, at high temperatures. Thus [13] provided the first non trivial class of
examples of measures in infinite dimension which are neither product measures
nor Gaussian, but for which (0.0.3) holds.

Afterwards, a new idea based on the specific structure of Gibbs measures
was introduced to deal with Riemannian manifolds with possibly negative Ricci
curvature as well as with discrete settings. In particular, in [109] and [110], a
Sobolev inequality was proved for systems with short range interaction on (S1 )Zd
at high temperature and for any temperature, respectively. An
extension of these results to systems with long range interactions (of the same
type as those studied in the uniqueness theory of Dobrushin) on Riemannian
manifolds at high temperature appeared in [111].

Later these results were extended to a variety of directions described in a
rich literature including [75], [69], [64], [53] - [54], [14] - [15], [74], ..., [98] -
[101], [105], [106] - [107], [106], [3], [4], ..., [113] - [115] ... Besides the above
mentioned control of ergodicity of a hypercontractive Markov semi-group, one
of the most interesting consequences of the research in this domain is the proof
of the equivalence of the strong mixing property and the log-Sobolev inequality.

In view of the restricted time and space that we were given to present this
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area, we will not be able to consider many new and interesting developments of
this field, such as the extension to non-compact manifolds M (see [115] and more
recent works of Yoshida and Bodineau, Helffer), the study and the applications
of other coercivity inequalities (such as Nash’s inequalities (see [9])), the link
with isoperimetric inequalities, the extension to loop spaces (see [35]...), to
non-commutative spaces ( ~78~ ... ) ...

The contents of these notes are as follows.
We begin by introducing the objects under study : Markov semi-groups, their

infinitesimal construction via infinitesimal generators, invariant and reversible
measures.

The second chapter is devoted to LZ ergodicity and the simplest coercivity
inequality - the spectral gap inequality. After some general discussion, we shall
show the stability of this property under perturbations, that is by change of the
initial measure by bounded densities, and tensorisation (product property).

In chapter 3, we consider classical Sobolev inequality and its consequences :
ultracontractivity property and the classical Nash inequality.

In chapter 4, we study the general properties of log-Sobolev inequalities
including stability by perturbation, product property, equivalence with hyper-
contractivity and its implications concerning a spectral gap inequality. We also
present the Bakry-Emery criterion and its equivalent forms in terms of semi-
groups. We finally give an example of an infinite dimensional system defined by
conditional expectations and discuss its log-Sobolev properties.

Our journey in statistical mechanics begins from chapter 5. The reader will-
ing to learn how to prove log-Sobolev inequality in infinite-dimensional settings
can go directly to this chapter. We begin by introducing the statistical me-
chanics framework of spin systems on a lattice. Then, we describe the general
strategy introduced in [110, 98, 99] to prove log-Sobolev inequalities for systems
with finite range interactions. It is based on a study of an auxiliary Markov
chain constructed as the convolution of conditional expectations on cubes of
given finite size as described in 5.2. In section 5.3, we restrict ourselves to
one-dimensional lattice whereas in sections 5.4 we consider higher dimensional
lattices. Under a strong mixing condition hypothesis, this Markov chain will
be shown to converge towards the underlying Gibbs measure, the log-Sobolev
inequality being then, in a certain sense, derived as a consequence of the prod-
uct property. In sections 5.3 and 5.4, we prove the key point of this strategy
called sweeping out relations. Our method is constructive in the sense that we
always consider finite volume expectations. Our formalism will always cover
both discrete and continuous settings, i.e. involving product spaces build upon
discrete sets as well as smooth compact connnected Riemannian manifolds.

In chapter 6, we apply the ideas of the previous chapter to a slightly different
context. We indeed show that the formalism developped in chapter 5 extends
naturally to the case where the measure ~ is not given a priori as a Gibbs
measure but is described as the stationary measure of a cellular automaton. In
such a setting, one does not know in general even whether  is a Gibbs measure
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for some interaction. Moreover the transition matrix of the cellular automaton

may even not be symmetric for p.
Another strategy to prove logarithmic Sobolev inequalities is to make a mar-

tingale expansion of relative entropy by considering - instead of Markov chains
constructed as convolutions of conditional expectations - conditional expecta-
tions on an increasing sequence of finite subsets of the lattice. This idea was

originally introduced in [69] for finite range interaction systems. We illustrate it
in chapter 7 where we study systems with long range interaction (decreasing in
a suitable way so that the Dobrushin’s uniqueness condition could be satisfied).
Again, sweeping out relations play a key role in this approach.

In chapter 8, we apply the previous log-Sobolev inequalities to deduce er-
godic properties for the associated semi-group. We first present in section 8.1
a simple construction of these semi-groups which yields an exponential approx-
imation property. In section 8.2, we study the ergodic properties of these semi-
groups when a log-Sobolev property is satisfied. In section 8.3, we describe
the equivalence theorem (cf [99]) which establishes the correspondence between
properties of the Gibbs measure such as strong mixing, uniform analyticity and
other conditions introduced by Dobrushin and Shlosman and properties of the
dynamics such as hypercontractivity or (uniform) L2 ergodicity.

In chapter 9, we explore systems with random interactions and apply the
ideas of chapters 5-7 to study the ergodic properties of their dynamics at high
temperature.

Finally, we describe a few results concerning L2 ergodicity of Markov semi-
groups at low temperature where the strong mixing property fails.

We give a long but still very incomplete bibliography of the subject.

These lecture notes represent several attempts to try to understand and

organize the diverse evolutions of the subject. Part of this course was already
given by B. Zegarlinski in Bochum in 1992, who would like to thank S. Albeverio
for giving him the opportunity to spend a long, happy and fruitful period at
Ruhr. We could also continue this work during two semesters at Institut Henri
Poincare of Paris where we had the pleasure to give courses. The second of

these courses gave birth to these lecture notes originally in French. We are
very grateful to the organizers of these two sessions, as well as to the staff of the
Institut Henri Poincare. B. Zegarlinski wishes also to thank D. Stroock for their
long and fruitful collaboration. Finally, our collaboration was made possible
thanks to the financial help of the European Stochastic Analysis Network and
EPSRC.



Chapter 1

Markov Semi-groups

This chapter reviews some classical facts from the theory of Markov semi-groups
which can be found for instance in [49] or [18]. We first recall the definition of
Markov semi-groups and generators, giving examples in exercises. We then in-
troduce the notions of invariant and reversible measures of Markov semi-groups.
At the end of the chapter, we briefly sketch the relation between Markov semi-
groups and Markov processes. For a more extended treatment of the related
theory of Dirichlet forms and their links with Markov semi-groups the reader is
encouraged to look at [44], [70] and [83]. .

1.1 Markov Semi-groups and Generators
Definition 1.1 A family of linear operators on a Banach space (B, 
is called a semi-group i f f it satisfies the following conditions

(1) Po = I, the identity on B.
(2) The map t - Pt is continuous in the sense that for all f E B, t ~ Pt f

is a continuous map from R+ into B.
(3) For any f E Band (t, s) E (m+)2,

Pt+s f = PtP$/’ .

The space B under consideration in most cases will be the set C(Q) of real-valued
bounded continuous functions on a Polish space H equipped with the uniform
norm. However, in some important cases one needs to consider a Banach space
given by a set of more regular functions, such as for example the set of uniformly
bounded continuous functions from a Polish space Q into lR, furnished with the
uniform norm. This is one of the reasons why we prefer to introduce a general
Banach space B setting. In the sequel, we always consider spaces of (nice)
real-valued functions. B will be equipped with a partial order >.

Definition 1.2 A semi-group (Pt)tO is Markov iff
(4) For any t E IR+,
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Pt ll = 11.

(5) For any t E R+, Pt preserves positivity, i.e, for any f E B and t E ~+,

f>0 ~ Ptf  O.

Properties (4) and (5) imply that, for any t E IR+, Pt is contractive, that is,

Definition 1.3 Pt is contractive i f f for any f E B,

_ II f II [ ( 1.1.1 )

where ~ ~ ’ ~ ~ [ denotes the norm on B.

The notion of Markov semi-groups can be illustrated by the following exam-

ples

Exercise 1.4

. a) Let A be a non negative linear bounded operator, ~A~ ~ 1, so that, if
1 is the identity in B, A1=1. Let 03BB > 0. Verify that

Pt = e tX(A-1) _ ~ ( A - It
n>0 

~’

is a Markov semi-group on B. Here, we have denoted

~A~ = supf~B,f~0 ~f~-1~Af~ with ~.~ the norm on B.

. b) Let ~ be a probability measure on a S~ equipped with the ~-algebra X
and let m > 0. For any f E C(~), we define

Pt f(w) = f(w) + (1 _ .

Verify that (Pt)tO is a Markov semi-group on equipped with the
uniform topology.

. c) (d-dimensional Brownian motion ) For f E and w E , we set

Ptf(W) = 1 (203C0t) d 2  f(y)e- |w-y|2 2t dy.

Show that (Pt)t~0 is a Markov semi-group on the space of uniformly
continuous functions equipped with the uniform topology.

~ d) (Brownian motion on the circle) If S~ = S1, one can represent any
continuous function on S~ by its Fourier expansion

f(x) _ ~ ,

n~
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We then let
_ ~ .

Verify that is a Markov semi-group on endowed with the
uniform topology.

. e) (Poisson Process) Let ~ E 1R+, S2 = For any f E and
, wedefine

- k>o - 

Show that is a Markov semi-group on the set endowed with
the uniform topology.

. f ) (Ornstein- Uhlenbeck Process) If S~ =1R, prove that

_

= + 1- e-2t y) 

defines a Markov process on .

Definition 1.5 The infinitesimal generator ~C of a semi-group Pt is defined by
the formula

,Cf := lim !(Pt - 1)1 (1.1.2)t

for any function f for which the limit makes sense. The domain D(,C) of L is
the set of functions of for which the limit (1.1.2) exists.

Exercise 1.6 In the examples given in exercise 1.,~, show that the infinitesimal
generators are given, in the same order, by

. a) ~,~ _ ~(A - ~)f, D(~) = B.

. b) ,C f = f - f D(L) = 

. c) In the case d = 1 to simplify, ,C f = (1/2) f", D(,C) is the set of twice
continuously differentiable functions f such that f’ and f" are uniformly
bounded and continuous.

Hints : Show that

g03BB(x) := 03BB ~0e-03BBtPtf(x)dt = ~-~03BB 2f(y) exp{-203BB|x- y|}dy

by using the identity

~0 
exp - {y2 + c2 y2} dy = 03C0 2e-2c



11

for all c > 0. Deduce that 203BB(g03BB - f = g"03BB . On the other hand, prove that
ga E D(,C) and

~(9a) _ f ). .

Using the above identity, deduce that ,Cga = (1~2)g~ and conclude by
letting a go to infinity and using that ,C is closed (see below).

. d) ,Cf = (1/2) f", D(,C) is the set of twice continuously differentiable func-
tions.

. e) For a E R+, show that ,C f (x) = a( f (x - a) - f (x)). ~(,c) = CU(Q).

. f) ,C f (x) = f"(x) -x f’(x), D(,C) = the set of ~ times continuously
differentiable functions on R with bounded derivatives (see 

The following theorem characterizes the infinitesimal generators : :

Theorem 1.7 (Hille-Yoshida theorem for Markov semi-groups ) A linear oper-
ator ,C is the infinitesimal generator of a Markov semi-group (Pt t E IR+) on ,~
iff

. IIED(,C) 

. D(,C) is dense in B.

. ,C is closed.

. For any a > 0, (~~ - £) is invertible. Its inverse (aI - ,C)-1 is bounded
with

su p ~~( ~I-,C ) -1 f ~) _ ~  1~f~~1 03BB

and preserves positivity (i.e for all f > 0, (aI -,C)-1 f > 0~ .

Remark 1.8 : Recall that an operator £ is closed iff for any sequence f~ of D(,C)
converging (in the sense of the topology inherited from the norm ] [ B)
towards a function f and such that ,C f n converges, then

lim _ 
.

n-oo

Proof of theorem 1.7 Necessary condition.
The first point is a direct consequence of (4) of definition (1.2) and of the

definition of the generator. To show the second point, we shall see that

Do :- ~ 1 0 t ds , f E C(Q), t > 0 C D(,C). (1.1.3)

Since P, f is continuous for any f E ~i, Do is dense in B which completes the
proof of this point.
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To prove (1.1.3), note that for any T E we have

- i (PT - I) = -/ i T+t t 
(1.1.4)T (PT 

- I) 
Jo 

ds P3 f = 

03C4 t 
ds Ps f - - T 0 

ds Ps f (1.1.4)

1 dS Ps 1 /"’ 
dS Ps f

by property (3) of definition 1.1. Then (2) of definition 1.1 gives the convergence
of the right hand side of (1.1.4) so that we obtain

L t0 ds Psf = Ptf - f, (1.1.5)

resulting with (1.1.3). Remark as well that from (1.1.4), we also deduce by
letting T going to zero that for any f ~ D(,C),

L t0 ds Psf = Ptf - f = t0 ds PsLf. (1.1.6)

To show that ,C is closed, let us take a sequence fn in D(,C) converging to a
function f and such that, for some g E B,

lim ,C f n = g.

By (1.1.5), we obtain that

Ptfn - fn = Lt0 ds Psfn = t0 ds PsLfn (1.1.7)

Hence, letting n go to infinity, we obtain Pt f - f = t0 ds Psg. Dividing by t and
taking t ,~ 0, we conclude that jC/ = g for every f 6 D(,C).

To finish the proof, let us consider the resolvent R(a, ,C) of the operator £
defined by

R(a, ,C) :_ (aI _ ,C) _ ~
and show that 

R(03BB,L)f = ~0 ds e-03BBs Psf. (1.1.8)R(03BB, L)f = ~0 ds e-03BBs Ps f. (1.1.8)

In fact, if one considers the semi-group Ps = e-as Ps with generator (,C - A/),
we obtain, according to ( 1.1.5) that

(L - 03BBI) t0 ds e-03BBzPtf = e-03BBtPtf - f
for any bounded continuous function /. . Taking the limit as t ~ oo and using
that ~C is closed, we conclude that, for any bounded continuous function f ,
~o belongs to D(,C) and

(,C- aI) ~0 ds e-03BBs Psf = -f. (1.1.9)
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Consequently, (£ - AI) is bijective and (1.1.8) is satisfied. In particular, since
Ps is contractive,

sup -, 1
Ilfll=1 0 A

R(a, ,C) is thus a bounded operator. Also, it is clear from (1.1.8) that R(a, £)
preserves positivity.

Sufficient condition.
For any A > 0, we introduce the Yoshida approximation of £

,Ca := ,C)-1= a2(aI - /;)-~ - A7. (1.1.10)

Since

II( ~I-,C ) -1 II -  1 ~~ (1.1.11)

is a bounded operator and we can define a family of operators P03BB by

P,1 := etL03BB :_ 03A3 tn n! Ln03BB = 1.1.12

P03BB is a Markov semi-group for any A > 0 ( see exercise 1.4.a)). It remains
to show that Pt converges towards Pt as A goes to infinity and then that P
possesses all the properties of a Markov semi- group. To begin with, notice that
for any f in the domain D(,C) of £,

(1.1.13)

Indeed, the identity

À(ÀI - ,C)-I - (AI - ,C)’1,C = I (1.1.14)

holds on D (,C) . The second term goes to zero as .1 goes to infinity so that we
find

lim (1.1.15)

for every g E D(~C), and hence for any g E D(,C) = ~. Since £ is closed, we
deduce that converges towards £ as A goes to infinity. We can now show
that ~~’ converges towards Pt as a -~ oo. In fact, for any couple (~1, ~2) of
positive real numbers and any f E D(,C), we have the interpolation formula

etca2 f = t / dset(s03BB1 + (1+s)03BB2)(03BB1 - 03BB2)f (1.1.16)

since and are bounded commuting operators. We can see as above that
the semi-group Qt := et~s~al+~1’’~’~a~~ is contractive as s E [0,1] and conclude
that

~et03BB1 f - et03BB2f~  (1.1.17)
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Thus, the convergence of the implies that of the ~~’s. Let Pt be the linear
operator defined by

Pt = lim Pt (1,1.18)

on D(). It is clear that the semi-group properties, contractivity property,
positivity properties as well as conservation of unity can be extended from P~
to P. Hence P is a Markov semi-group. Also, for any f E D(,C), we obtain by
interpolation

t t

Pt f - f = lim (P/ - I) f = lim / dsPJ ,Ca f = dsP$,C f . (1.1.19)o 0
so that P is continuous with generator £ on D(,C). By condition (4) of the
theorem, the resolvent of the semi-group corresponds to that of ,C on B so that
£ is the generator of P. o

Exercise 1.9 Show that the generators with domains D(,C) defined in exercise
1.6 are infinitesimal generators of Markov semi-groups by using Hille-Yoshida’s
theorem.

Exercise 1.10 Show that for any integer number n, is dense in B.
Hint : Generalize ~1.1.5~.

1.2 Invariant Measures of a semi-group
We recall that

Definition 1.11 Let (Pt)t>o be a Markov semi-group. A probability measure u
on (Q, E) is invariant with respect to the semi-group (Pt)tO iff for any f E 
and any t > 0

= (1.2.20)
The set of invariant measures for a semi-group (Pt )tO will be denoted hereafter
~ - ,~(P). 

_

Remark 1.12: Note that a semi-group may have no invariant probability measure
(consider for instance the semi-group associated with Brownian motion).
The invariant probability measures are also characterized by

Property 1.13 ~ on (0, E) is invariant with respect to the semi-group 
iff for any f E D(,C),

= 0. (1.2.21)

Proof : By (1.2.20), we obtain for any t

=0. °
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Taking the limit t - 0, we deduce ( 1.2.21 ) . Conversely, since we already noticed
that

(Pt - I ) f = ,C it dsPsf, ,
by integrating both sides with respect to we get that ( 1.2.21 ) implies ( 1.2.20)
for every bounded continuous function since we saw in (1.1.5) that f~ dsPs f
belongs to D(~C). o

The semi-group (Pt)t>o has been defined until now on the Banach space B,
which a priori is a subspace of C(SL). In fact, we can extend it as shown in

Property 1.14 Let ~C E with respect to a Markov semi-group (Pt)t>_o.
can be extended to any for p > 1. . 

-

Proof : The operators Pt being linear, positive and with total mass Pt 1 = 1,
we have by Jensen’s inequality for any p > 1 and any f E ~i,

|Ptf|p  . (1.2.22)

Integrating both sides with respect to  E J, we deduce that

|Ptf|p  tc) f Ip. . (1.2.23)

Thus, the Hahn-Banach theorem (see [89], theorem 5.16) shows that we can
extend Pt to .

0

Definition 1.15 A Markov semi-group ~Pt,t > 0} is ergodic for q E
] I, and ~C E J(Pt) for any function f E L~ (tC),

lim (Ptf /
A Markov semi-group ~Pt, t > 0~ is uniformly ergodic is reduced to a

unique probability measure and

lim ~Ptf - = 0.

In the rest of this course our goal will be to develop tools to study the ergodic
properties of Markov semi-groups. We shall often consider semi-groups P and
measures ~c satisfying the following property stronger than invariance.

Definition 1.16 A probability measure p on (~, E) is reversible for a Markov
semi-group ~Pt, t > 0~ if f for any ( f g) E ~i and time t > 0,

(gPt f ) = tc( f Pt9). (1.2.24)

Equivalently, one says that (Pt)tO satisfies the detailed balance condition for
the probability measure tc.
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The set of reversible measures of a Markov semi-group ~Pt, t > 0~ will be
denoted . Clearly

C 

since we can take g = 11 and Pt1I = lI. (1.2.24) shows more precisely that the
semi-group Pt obtained as the extension of Pt in L2 (p) (as indicated in property
1.14) is self adjoint in L2(~). We can associate to Pt a closed infinitesimal
generator ,C (see the proof of the Hille-Yoshida theorem) which coincides with
the infinitesimal generator of P on its domain. Then, it is not hard to see that
condition ( 1.2.24) is equivalent to

= (1.2.25)
for any f , g in the domain of ,C. In other words, since ,C is closed, ,C is self-adjoint
in L2 (~) . .

Exercise 1.17 Verify that the probability measure tc is invariant but not re-
versible for the generator ,C in the following two examples ’

. Let (03A9, E, ) be a probability space and (E1, E2) two different conditional
expectations, El = p( et E2 = ( |A2), A1 ~ A2. If I denotes the
identity in L2( ), we define the operator L in by

. To U E C1 , we associate the following Gibbs measure on R

dx ) _ 1 Z .

provided that 0  Z  oo. For a function a E consider the

operator on C1 defined by

d

= a = 

i=1

If
div(a) = a ~ DU,

check that p is invariant for ,C. However, it is not reversible in general.

Exercise 1.18 Show that the standard Gaussian law on R is reversible for the
Ornstein-Uhlenbeck semi-group generated by ,C = 0 - . More generally, let
A be a finite subset of Zd and 03A9 = Let U be a continuously differentiable
function on ~ diverging sufficiently fast to infinity for ZA = f 
to be finite. Let ~c be the probability measure

(dx) = 1 Z exp{-U(x)}dx.
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Consider the generator on defined by

£ - L~(~’ _ 
iEA

where ~_ i (resp. ~~~ denotes the derivation (resp. the Laplacian ) acting on the
i-th coordinate. Here the g;’s are bounded Lipschitz functions. Give sufficient
conditions on the g;’s so that p is reversible for the semi-group associated with
£.

Exercise 1.19 Let A be a finite subset of 7Ld and S2 = ~-1, +1}A. Let

£ - l.J 
iEA

with ~if = - if

; ( +Uj I
~~ - if j = i.

Consider the probability measure p on S~ of the form

- ~-. 1 Q ~ e-v~°~ f ( )
Give sufficient conditions on the c; so that ~ is reversible for the semi-group
associated with ,C.

Exercise 1.20 Let A be a finite subset of Consider X C ,~d a finite subset
of . Set

X + i = ~~ + 
Let p be a probability measure on a probability space S~ = M~ for a Polish space
M. Let be the sigma-algebra generated by . We denote

Ex+1 = u~ 

the conditional expectation of  knowing . Let  be the generator
given, for f E L2(~), by

,C f (~) = L(Ex+s _ I)f(x).
iEA

Show that p is reversible for the semi-group associated with ,C.

1.3 Markov Processes

The notion of Markov Semi-group is intimately related with that of Markov Pro-
cesses. In this section we recall some aspects of such processes and in particular
their links with Markov Semi-groups.

We define the Markov property as follows.
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Definition 1.21 Let (S~, ~’, IP) be a probability space; an adapted pro-
cess X = {Xt : ~t -~ IRn, t > 0, }, n E ~V, will be said to be Markov with respect
to ) for all measurable bounded set r and all times s, t,

IP(Xt E 0393|Fs) = IP(Xt E .

Exercise 1.22 Show that the Brownian motion, or more generally any process
with independent increments, is a Markov process.

In the sequel, we denote for any x E H,

E r) := E rlxo = x)

the law of the Markov process with initial condition x.
Later on, homogeneous Markov processes will be of interest to us. They are

described as follows

Definition 1.23 Let (S~, .~, (~’t), IP) be a probability space. A Markov process
X = {Xt, t ~ 0} with respect to will be said to be homogeneous iff for every
bounded measurable set r and any times s, t, u > 0,

E r1X8) = IP(Xt+u E rIXJ+u). .

Exercise 1.24 Show that Brownian motion B, is a homogeneous Markov pro-
cess with respect to its natural filtration = o(Xs, s  t). .

If we denote by IP the law of a homogeneous Markov process starting from
x E 0, we can define a family of linear operators on the space of bounded
measurable functions by

Pt f (x) = 

(Pt)tO is then a Markov semi-group.
We can reformulate the homogeneous Markov property as follows

Property 1.25 Let (S~, 0, (.~t), IP) be a probability space. A process
X = {Xt, t > 0} is a homogeneous Markov process iff for any bounded measur-
able set r and all times s, t

IP(Xt E T~,~’s) = (Ptllr)(Xs) a.s

A proof may be found in [61], p. 75.
Notice that the notion of a Markov semi-group is in fact equivalent to the

definition of Feller-Markov processes defined below. This point is illustrated in
the following exercises.
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Exercise 1.26 Let (S~, .F, (.~’t), IP) be a probability space and X = > 0}
a Feller-Markov process (i.e a homogeneous Markov process such that for any
bounded continuous function f, , Pt f is bounded continuous). Show that the

operator family (Pt)tO is a Markov semi-group on (C(~), (~~). Conversely,
any Markov semi-group on (C(S~), ~ ~ ~ ~ (~) defines a unique Feller-Markov process.
Hint : For the second point,

a ) Use Riesz’ theorem to see that for any time t and any x E S~, there exists
a unique probability E(t ~, dy) such that for any f E D(,C),

Pt(f)(x) = ~~ 

b ) Let A be the algebra of cylinder functions on S~), that is, the algebra
of functions of the form

F(~) _ .f (~tl ~ ~ ~ ~ ~cP)
for some finite integer number p and times (tl, .., tp). . For a probability measure

define a normalized linear functional E’ on A such that, for F as above,
E’ (F) is equal to

t1, dy2)..E(tp - tp_n .

The Stone-Weierstrass theorem implies that A is dense in C(IR+, S~). Conclude
by Riesz’ theorem that there is a unique probability measure P’ on this space
such that for any F E A,

= 
.

Show that x E S~) is the law of a Markov process.

Since we saw that Feller-Markov semi-groups and homogeneous Markov pro-
cesses are in bijection, the Hille-Yoshida theorem establishes a bijection between
Markov processes and infinitesimal generators. This connection may in fact be
made more directly by following Stroock and Varadhan [102] who introduced
the notion of martingale problems.

To associate a generator to a Markov process, we define

Definition 1.27 Let ,C be an infinitesimal generator. A probability measure IP
on ~) is said to be solution of the martingale problem for ,C with initial
condition r~ iff

1.

~~o=~l~=l. °

2. If we denote by x the canonical process under IP, f(xt) - fo ,C f (xs)ds is

a martingale under 1P for the canonical filtration

ot = ~ u  t) .
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We then have the following theorem (see Proposition 4.2 in [61])

Theorem 1.28 Let ,C be an infinitesimal generator. Let ~ E S~) be the

unique Feller-Markov process associated to ,C. Then, for every (rt E S~), E~ is
the unique solution of the martingale problem for ~C with initial condition r~.

Finally, let us give as an exercise the following example of Markov process

Exercise 1.29 Let be continuously differentiable Lipschitz functions
on IRd. Show that the stochastic differential system

dx~ = hs(xt)dt + dBt 1  i  d,

with a d-dimensional Brownian motion (B’,1  i  d), admits a unique strong
solution which is a Markov process. Describe the generator of its associated
Markov semi-group.

For further informations on Markov processes the reader may like to consult the
books [61] and [82].



Chapter 2

Spectral gap inequalities
and Z~ ergodicity

Before considering Sobolev inequalities and entering the heart of the matter, we
study the J~ ergodicity of semi-groups satisfying the detailed balance condition
with respect to some probability measure p. As we already mentioned in the
last section, this property allows us to consider their infinitesimal generators as
self-adjoint operators in so that the study of these operators in that space
is rather natural.

Let jC be an infinitesimal generator. Let  be a probability measure on (H, E)
and a Markov semi-group satisfying the detailed balance condition with
respect to p. We define

Definition 2.1 A probability measure p 6 satisfies a spectral gap in-
equality 2jy there exists a positive real number m such that

~(/-~)’~(/(~)/) (2.0.1)

for any function f ~ n ~(/;) such that the right hand side of ~.0.~ ~
finite. The largest positive real number m satisfying ~2.~.~ ~ called the spectral
gap of the self-adjoint operator ~C.

The corresponding Dirichlet form is given on elements of the domain of the
generator by

~(/~)=~/(-~)
It can as well be defined by the carré du champ

ri(/,/):=~(~-2//;/).
Indeed, for any  6 we have

(/,/)).
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The carré du champ operator is non negative since

rl (f,f) = lim 1 > 0

by Cauchy-Schwarz’s inequality. It will play an important role latter.

Example 2.2 Let A be a finite subset of T~d.
. Let S~ = = {x = x~ E Vi E A} with the unit

sphere in IRd. Consider the Langevin dynamics generator

,c=~(o~ 
iEA

for some function U E C1 (~). . Then

_ 
.

iEA

. If S~ = {-1, +1}A and we consider the Glauber dynamics generator

iEA

for some functions cs > 0, then

= ~~s(a~f)2.
iEA

Exercise 2.3 1) Let (03A9, E, ) be a probability space. Let  be a generator with
domain L1 given by ,C f = tc f - f . Then, show that tc E ~o(,C) satisfies a
spectral gap inequality with m = l. .

~~ If S~ = {-1, +1} and p = + (1-p)~+1 for some p E (0,1), , we define
the generator £ on the set of measurable functions by ,C f = c(~)( f (-Q) - 
for some non negative function c. Choose c so that p E ,~o(,C) and show that ~c
satisfies a spectral gap inequality.

The spectral gap property is equivalent with the notion of L2 ergodicity of
the semi-groups

Property 2.4 p E satisfies a spectral gap inequality with constant m iff
for any t > 0 and any function f E 

C - 

,

Proof : Note that if f is a centered function, J f dtc = 0, then ft = Pt f is also
centered since p is . invariant. Hence, (2.0.1), applied to ft = Pt f, gives

- >- 
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and so, as Po = I, ,
, ~ e-2mt~( f2), (2.0.2)

Conversely, if f E D(,C) satisfies (2.0.2), then t - -~ f )2 is decreasing.
Hence,

- _  0.

Taking t = 0, we deduce the spectral gap inequality.
o

The notion of spectral gap inequality can easily be extended to infinite di-
mension. In fact, we have the following product property

Theorem 2.5 Let (~Es)i=1,2 be two probability measures on E~)R=1,2 satis-
fying the spectral gap inequality with coefficients (mi)i=1,2 for some generators
(L=)z=1,2. Let Q = Qi x S~2 be equipped with the product u-algebra. For any

function f on Q, we note

= f (~~ ~’) = 

and extend functions on Q by

~ x2) = x2) _ (x2).

Then, if ,C = ,C1 + ~C2 and m = min(ml, m2), the product law tal ® ~2 satisfies
the spectral gap inequality with constant m

m 1 ® 2(f - 1 ® 2f)2 ~ 1 ® 2(f(-)f)) (2.0.3)

for any measurable function f for which the right hand side is finite.

Proof : Integrating with respect to one variable, we obtain

0 f~2(f - ~1 ® /~2/)~ = J.L2 ~lf)2~ + ® ~2f)2.

Applying the spectral gap inequality for tcl and /22, we deduce

0 ~2(f - 0 ~2f )2 ~ ® (f (-~1)f + .

On the other hand, f -~ rl ( f , f is convex since

1(f~f)( ) t o 2t tf( )) ( ) °

Thus,

2 ( 1f(-2) 1f = 2 (0393L21( 1f, 1f) ~ 1 ® (0393L21 (f f))
which finishes the proof.

o

Further, the spectral gap property is preserved when we perturb a measure
by a bounded density.
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Property 2.6 Let ~ be a probability measure on a space (S~, E) satisfying the
spectral gap inequality for the generator L with constant m. Let U be a bounded
measurable function and consider the probability measure v given by

03BD = 1 Ze-U d

with

Z = 

Then v satisfies the spectral gap inequality for the generator L with constant
. 

Proof : This property is clear once one notices that, if osc(U) = sup U - inf U,
for every measurable set A,

~ v(A)  (2.0.4)

Indeed, one then obtains, with the additional observation that for every constant
C, v(1 - v f ) 2  v(1 - C) 2, and therefore

v( f -  v( f - 
 

~ eOSC(U) m 03931 (f,f)

e2OSC(U) 
m 
.

o

In fact, this property can be improved when one considers finite volume
Gibbs measures with short range interaction. We then have (see [92] or ~112~)

Property 2.7 Let (S2, E, be a probability space and assume that p satisfies
a spectral gap inequality with constant m for the carré du champ 03931. Let A =

~-L, L] x for some (l, L) E (~V’’’)2, d  L. Let U be a real valued

bounded continuous function on 5~2. We denote by W E the boundary
condition . Let

= ~ + ~ 

and set

- .

A

Then, if rl = ri, there exists a finite constant c (depending on U) such
that 

- 03C9f)2 ~ ||ecld-1 03C9(03931 (f,f))

for any measurable function f such that the above right hand side is finite.
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Remark that the previous property would only yield in this example

~A(f - ~Af )2  (f ~ f ))~

Hence, property 2.7 is a real improvement when L is large. It also shows that

in dimension 1, the spectral gap is bounded below by the inverse of the volume
of A. In fact, we shall see later that it is of order one, a fact linked with

absence of phase transition for systems with finite range (or more generally with
sufficiently quickly decaying) interactions on one dimensional lattice. Property
2.7 is optimal (modulo multiplication by the volume of A in the right hand side
and the choice of the constant) in such a generality (see the lower bound proved
by Thomas [104] at low temperatures).

Proof : Let us choose a lexicographic order in A and denote by {i1, .., i~, ...} the
points in A in this order. We choose it so that the first coordinate

of increases slowly, that is, that we fill in the faces of volume ld-1
of A with coordinate i1 one after the other. Set Ik = t i l .. , ik } .

We shall proceed by interpolation : note first that

~n(f - ~nf )2 = ’ 2 1 / .. , ~~~ 

Writing, with Op f (x, x) = ., ~ v 

M-i

E Op f (x, x)~
p=o

and using Jensen’s inequality we obtain

IAI-l

~A(f - ~ !A! E l~A)®2 x))2 ~ (2.0.5)
p=0

In each term of the right hand side, only the variable at the ip+i-th site can
differ. Notice as well that the points of ,Tp = ~im, m > p + and of

J~ = {im, m  p - are at distance larger than one from ip+i for

some well chosen finite constant cd. . Consequently, bounding the density of ~c~
uniformly on the we get, if Sp = ~ik E A;  

that for any function F > 0,

 ® Sp ® 

Here i ESp) = i ~ Sp) and

d 0J; = 1 ZJ03C3pe-03B2HJ~pdu~|J~p |
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with the convention that for E = + or -,

Hj = £ x~)~

From the above bound, we obtain that

( 03C9)~2 (0394pf(x, x))2  ~ Sp ~ 0J+p)~2 (0394pf(x, x))2 . (2 .0 .6)

Using the spectral gap inequality for p, we deduce that

( 03C9)~2(0394pf(x, ))2 _ m ® Sp ® (f,f)) (2.0.7)

with acting on the ip+i-th variable.
To return back to initial probability measure on the right hand side of (2.0.7),

we insert the appropriate density multipllied by the inverse of its minimun, to
find

( 03C9 ~2 (0394pf(x, )) 2 
~ e6cdld-1~U~~ m 03C9 0393p+11 (f ,f) . (2.0.8)

Thanks to (2.0.5) and (2.0.8), we can conclude that

~n.f ) _ m ~ (.f ~ ,f )) . (2.0.9)
"~ 

c=o

o

Exercise 2.8 Generalize the last property to the case where the interaction has
finite range, (but not necessarily of nearest neighbours type), and the interaction
is inhomogeneous, that is, the Hamiltonian is given by

Hn (x) _ ~ 

for a family X of finite subsets of 7l~ with uniformly bounded diameters and a
family (UX)xEx of local functions so that, for any X E X, Ux(x) only depends
on (xz , i E X ) .

The next exercise gives a link between the spectral gap inequality and the con-
centration of measure phenomenon

Exercise 2.9 (~56~) If satisfies a spectral gap inequality with constant m on
for a carré du champ ri satisfying the Leibniz rule

= 
,

then for all f E D(,C), , and t sufficiently small so that

t2
 1
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we have

etf ~ const.et2 m~03931(f,f)~~et f.

Hint : Write 

 (etf ) = (e tf 2, e tf 2) + ( (etf 2 ) )2
and apply the spectral gap inequality to etf 2). Observe that when rl sat-
is fies the Leibniz rule,

03931(e tf 2, etf 2) = t2 4 etf03931(f,f).

Proceed inductively.

We shall continue our discussion on the carré du champ and Leibniz rule when
studying the Bakry-Emery criterion.

In the next exercise, we suggest proofs of the spectral gap inequality in few
simple cases.

Exercise 2.10 . S~ = ~0, a~ for some positive real number a. For f E 
such that I(a) = f (0) = 0, we set

d2
.

If ~c is the normalized Lebesgue measure on S~, then ,C is self-adjoint in
and the spectral gap inequality is satisfied with m >_ . Hint :

Use integration by parts formula.

. Let 03A9 = {-1, +I} and  be the Bernouilli law + (1- Let

,C f (x) = f (-x) - v( f ). Show that the spectral gap inequality is satisfied
with m = 1.

For further general informations about the spectral gap inequality, the reader
may like to consult [55] and references therein. (For interesting upper bounds
on eigenvalues see [17].) Finally, we remind the reader that in forthcoming
chapter 5 we shall be interested in the logarithmic Sobolev inequalities which
imply spectral gap inequalities. Nevertheless, one can obtain directly (and by
similar methods) lower bounds for the spectral gap constant.

To obtain a stronger control on the asymptotic behaviour of Pt f than the
studied above L2 ergodicity, we shall need contractivity inequalities between
different LP spaces. The important role in that will be played by Sobolev in-
equalities studied in the next chapter.



Chapter 3

Classical Sobolev

inequalities and
Ultracontractivity

In this chapter, we study classical Sobolev inequalities and their links with
uniform ergodicity of Markov semi-groups. We shall see that classical Sobolev
inequalities are equivalent to Nash inequalities, which are in turn equivalent to
the ultracontractivity of the associated semi-groups. The latter property entails
the uniform ergodicity of the semi-groups. Unfortunately, we shall see that in
general these inequalities cannot be true in infinite dimension (see exercise 3.7).
It is one of the main motivations to study log-Sobolev inequalities which satisfy
a product property and therefore can hold in infinite dimension.

Definition 3.1 j4 probability measure p 6 satisfies a classical Sobolev
inequality iff for some p 6]2,oo[ and two finite constants (a, b) G [0,~[2, we
have

(3.0.1)
for any measurable function f such that and are finite and, in

the case where b = 0, so that = 0.

In the next exercise, we describe some classes of probability measures for which
a Sobolev inequality holds.

Exercise 3.2 . Let 0 ~ IRd be a bounded convex open subset of IRd and p
be the normalized Lebesgue measure on O. Show that  satisfies a classical
Sobolev inequality restricted to the functions which vanish on the boundary
ofO.
Hint: .’ For d > 2 use Taylor’s formula to write

If( x) I 
t=l ’ xixi0 

~if(Xi. 0 yi)dyi
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for any function f which vanishes outside C~ and any point (xo,1  i  d)
with coordinates outside of O. Multiply all Taylor’s formulas and raise
to the power p = -1). Integrate with respect to the d dimensional
Lebesgue measure, use inductively the Holder inequality and the geometric
- arithmetic mean inequality to arrive at an useful inequality. By substitut-
ing to this inequality a power of the absolute value of a sufficiently smooth
local function one can obtain a family of useful inequalities including the
desired one (with optimal exponent~.

. Show that, if  satisfies a Sobolev inequality, any probability measure v «
p such that there exists a E ~l, oo[ for which

also satisfies a Sobolev inequality.

Note that when one considers a probability measure ~ on the entire real line R,
it was shown in ~85~, that if a probability measure ~ has a tail like for a
and E strictly positive real numbers, then tc satisfies a Sobolev inequality. This
result is false when E = 0 since the heat semi-group on R is not ultracontractive
(the latter as we shall see is equivalent to a Sobolev inequality).

Setting
= 

we shall see that

Theorem 3.3 If tc E ,7o(Pt) satisfies a Sobolev inequality, there exist a positive
real number ~y and a finite constant c such that for any f E L 1 

 c( a + (3.0.2)

In particular, if b = 0, Pt converges to ~ with a polynomial rate.
Moreover, if ~C satisfies both the spectral gap inequality and the Sobolev in-

equality, there exists a finite constant c’ so that for any f E L2 (p)

~Ptf - f~~  f~2. (3.0.3)
Let us point out that the above control is not really uniform on the entire
space but with probability one with respect to However, if  is compactly
supported and is absolutely continuous with respect to the uniform measure on
the underlying space, the theorem implies uniform ergodicity.

Theorem 3.3 relates Classical Sobolev inequalities with a contractivity prop-
erty of the associated semi-groups as follows. To prove it, let us recall the
standard notation

Definition 3.4 For (p, q) E ~l, 00~2,

~Pt~q,p = sup{~Ptf~p v f E C(03A9), ~f~q = ln(t) = o}

where = ( f q 
. This definition extends to the case p = oo.



30

With this definition, the first point of the theorem is equivalent to

Property 3.5 Under the hypotheses of theorem 3.3, there exist a positive con-
stant y and a finite constant c so that

~Pt~1,~ ~ c(a 2et + b)03B3
This property is itself equivalent to

Lemma 3.6 Under the hypotheses of theorem 3.3, there exist a positive constant
1 and a finite constant c so that

~Pt~1,2 ~ (a 4et + b)
Indeed, it is clear that property 3.5 implies

so that the lemma is verified. Conversely, the semi-group property implies that

(3.0.4)

But, by duality,

= sup~~(f~9)~ ~~f (~2 =1~ ~~9~~1=1}
= suP~~(9~f)~ (~f ~~2 = 1~ ~~9~~1= l~
- (~Pa (~~,2

which gives with (3.0.4) the desired equivalence.
Proof of Lemma 3.6 [112]

To prove the lemma, we first remark that the Sobolev inequality implies the

following classical Nash inequality

(~f~~2 ~ (3.0.5)

with a = . 2 ~ and ~3 = 1- a. This inequality is in fact directly derived via
Holder ’s inequality

, 1

for every couple (u, v) of conjugate exponents between one and infinity, by taking
v + 1 = p. Using (3.0.5) with ft we get

~ft~2  It) + ~ft~03B21 (3.0.6)

To estimate r 1 (It, /t), note first that the spectral theorem allows us to write

Pt = ~0 e-03BBtdE 03BB
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with (Ef , A > 0) the projections on the eigenspaces of £ in (see [12] or
[84] ) . With these notations

03931(ft,ft) = -P((Ptf)£Ptf)
~ _ ~ ~ ~-2Xt ~~~p ~ X > ~~ L2p> .

Noticing that for any real number u

 ~
~ 

2e

we deduce

’~~ ~ 2~t / ~~~~~’ ~~~~~’~ 2~t ° ~~°~°~~

Plugging this result into (3.0.6) and noticing that |Ptf|q  p) f]q for q > I ,
we deduce that for any t > 0,

~ ° ~~ °~°~~

Choosing to = t /2, we obtain by induction

~ft~2 ~ # ( j + b) 
03B1n 2 ~f~03B2103A3n~0 03B1n. ° (3 .°.9)

n=I 
2e~

Since

( ~~ + b)  2~ ( ~ + b)
we deduce that

~ft~22 ~ 203A3n~1 
na 

2et 
+ b 

I-a 

11/11:-0 . (3.0.10)

The lemma is established.

o

To complete the proof of theorem 3.3, it is enough to notice that, when the
spectral gap inequality holds,

~Ptf - f~~  ~P1~2,~~Pt-1f - f~2  - pf l [ 2 .

o

Unfortunately, the classical Sobolev inequalities are not satisfied in infinite
dimension in the sense that they do not satisfy a product property (as for
example the spectral gap inequality does).
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Exercise 3.7 Let Pt = be a Markov semi-group on C(S~). Let ~ E 

satisfying the Sobolev inequality

 .

For any integer number n, we define a semi-group Pt = with

n

~n = ,Ca
. s=1

if ,C; acts on the i-th variable. Show that for sufficiently large integer number
n, one cannot have

( f p ) 2 p  ( f ,f) + f 2

for all functions f for which the right hand side is finite.
Hint : Assume the above equality to hold and obtain a contradiction by taking

for some g E D(,C),
n

_ ~9(W~).
~=i

We saw that if  E satisfies a Sobolev inequality, Pt is ultracontrac-
tive, that is, for sufficiently large times t

~~Pt~~2,o~  oo.

This property was the key point to obtain uniform ergodicity. In fact, such a

property can be obtained directly when the state space is a compact Riemannian
manifold as one can see by doing the following exercise.

Exercise 3.8 Let S1 be the unit circle in Let A ~~ Tld and UA be a twice
continuousl y bounded differentiable function on S1 x S1. . Set

HA(Z) " £ .

We consider the semi-group associated with

,c = ~(o; - 
iEA

where ~~ = (1~2) ~ et v~ = dxi on S1 for i E A.
Show by use of Girsanov formula (see theorem 5.1 in that there exists

a finite constant c which only depends on UA so that for any function f > 0,

Ptf ~ f (y) ~ Pt (Zi ~ 
iEA
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Here, p~ is the semi-group associated with the Laplacian on the circle. Show

that, for any t > 0, there exists a finite constant c~ such that

sup pt(xi, dyi)  ct03BB(dyi)
x~

with a the uniform measure on the circle. Conclude that there exists a finite
constant c’ so that

~Pt~1,~  

Finally, let us point out that Nash’s inequality is equivalent to the control
we obtained for ~Pt~1,2. Indeed, we have

Exercise 3.9 Let ~ E and assume that there exists y, a, b > 0 such that

+ b) ~ °

Then, there exist A, B > 0 such that

~f~2 _ f) + B f2)1 203B1~f~03B21
with a = + 1) and (3 =1- a.
Hint : Note that for all t > 0,

~ft~22 >_ f)

and deduce from the hypothesis that

2t~r1(f, f) + + 

Conclude by optimization over the time parameter t.

In the set up of finite Markov chains, Diaconis and Saloff-Coste [24] gave
simple proofs of Nash’s inequalities. In [9], generalized log-Nash and Nash
inequalities were introduced.



Chapter 4

Logarithmic Sobolev
inequalities and
Hypercontractivity

We begin this chapter by describing the equivalence theorem of Gross contained
in his seminal work [52] which inspired intensive interest and development in
logarithmic Sobolev Inequalities. Then, we study the properties of logarithmic
Sobolev Inequalities, such as its stability by tensorization (see property 4.4) and
its stability by perturbation of the measure (see property 4.6 and exercise 4.7).
We then compare logarithmic Sobolev inequality with spectral gap inequality,
showing in particular that logarithmic Sobolev inequality implies spectral gap
inequality (see theorem 4.9). Finally, we discuss Bakry-Emery criterion, giving
the examples of probability measures satisfying a logarithmic Sobolev inequality.

Let Pt = et be a Markov semi-group and  6 J0(Pt). Given p ~]1, oo[ and
a constant c (E]0, oo[, we define

~):=~,p,c)=l+(p-l)~, .

Theorem 4.1 [Gross’ Integration Lemma] Let c ~]0,oo[ and d (=]0,oo[. The
statements ore equivalent :

~

(4.0.1)

for all non negative functions for M;/!xc/! right hand side is
(ii) For any q e [2, ~[,

 (4.0.2)

for all non negative functions for which the right hand side is finite.
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(iii ) Inequality (,~.0.,~~ for some q > l. .
(iv ) For all p EJ1, oo~ and p  q  q(t, p, c), we have

exp 2d ~ - 1 (4.0.3)

(v) For all q E ~2, oo~, t E IR+,

exp 2d 1 - 2 1 q 4.0.4

Properties (i~-(v~ imply
(vi ) For all t E IR+ and any non negative function f such that ~f~1 = 1 we
havehave 

S f (t) = ft log f t  Sf (0) + 2d( 1- (4.0.5)

for all t ~ IR+.

Inequality (4.0.1) is called the logarithmic Sobolev (or in short log-Sobolev)
inequality.

Constants (c, d), c E (0, oo) and d E ~0, oo), such that (i) is satisfied will be
called log-Sobolev coefficients.

Remark 4.2 : If additionally

((f) log f = -4 03931 ( f 2 , f ’ ) (4.O.fi)

then (vi) is equivalent to (i)-(v). (4.0.6) is in particular satisfied when I‘1 satisfies
the Leibniz rule (see section 4.3) . .

Exercise 4.3

. Show that the Sobolev inequality implies the logarithmic Sobolev inequality.
Hint : write

[ f lOg 
f2 

2 
- - I I f I |22 [ f2 ~f~22 f2 

2 lOg 
f2 

2 ,

and use Jensen’s inequality together with the Sobolev inequality. .

. Prove the logarithmic Sobolev inequality for a Bernoulli law  = 1 203B4a + 1 203B4b,
with (a, b) E IR2, by a direct computation (see 15~1~. The generalization to
~c = pda + (1- for p E (0,1) can be found for instance in ~9I~.

Note that the theorem shows that the logarithmic Sobolev inequality with
d = 0 implies that the associated semi-group is hypercontractive. In this sit-

uation one shows that the spectral gap inequality is satisfied, see theorem 4.9
below.
Proof : The equivalence between (i), (ii) and (iii) is easily obtained by sub-
stitution (For (i)-~(ii), we take f = g% , (ii) can be clearly reduced to (iii) and

by taking f = g q ).
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Let us show that (it) implies (iv). To do so, we remark that

~ log tt/~) = -~ + ~20142014~~(~)~,() >

=-~~~~~~~~)~~~
+q(t)fq(t)-1t ft (4.0.7)

= 
~tq(t) q(t) fq(t)t ( (fq(t)t log ft ~ft~q(t) + cq(t) 2(q(t) - 1) (f(q(t)-1t ft)) ,(0-1 B

where in the last line we used that

~()=~()-i).
Consider now more closely the last term in the bracket on the right hand side
of (4.0.7). By definition, for any q ~ 1 and any non negative function g,

(gq-1 g) = 

= - lim 1 03C4  (d03C9)P03C4(03C9,d)(gq-1(03C9) -gq-1())(g(03C9) -g())
~ -~~~~/~~)~(~,~)(~~)-~(~ (4.0.8)

= -i~r~~).
In (4.0.8), we used the following inequality satisfied for any non negative (a?, ~)

~-~4(~-~-!~)~-~
(4.0.7) and (4.0.8) yield

~~(~’~M~’-~-’~.~’)’-’
Under hypothesis (ii), we deduce that 

"

and hence, since ~(0) = p,

))/ttt~)t/~exp{2~-20142014)}. °
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Finally, for any given q  q(t), we can find a to  t such that q = g(to). Using
the definition of the semi-group and its contractivity property in any Lp, p > 1,
we obtain

= > _ ~ q~}
’ 

q)}
which extends the property to any q  g(t).

To show that (iv) implies (i), we note first that (iv) induces that for any non
negative function

~i~t~ : t --> 9~t~~~~~fs~~9(~)
is decreasing. Indeed, it implies that for all s, t > 0,

_ exp{-2d(p-9~t+s)/}~~pc~~e(d)~a(t+.)~~f~~a(,) 
 .

Consequently, log ~~ (t) is differentiable and also decreasing. We thus obtain

~tlog~ft~q(t) ~ ~t{2d(1 p - 1 q(t)} - 2d q2 (t).
Going back to (4.0.7), we deduce

(fqt ft ~ft~q) + cq 2(q - 1) (fq-1t ft)  (t).

Taking t = 0 and p = 2, we have

~ ~~rl~f~f) + 

Finally, to show that (iv) implies (vi), we differentiate with respect to the
time variable the following function

(t) = e’~’ S~ (t)

defined with a non negative f from the domain of the generator. Assuming that
= ~~f~~i = i, we find

_ log ft ) . (4.0.10)
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To estimate the last term, we note that for any function F e D(£) ,

Pl(£F) log F] = lim £ / P(dv)Pr (v - 

T" T

Since for all non negative z , y,

(log lll - log y) (lll - y) > (Z § - y 1 2)2,
one has

p[(£F) log F]  -4pFi (F " , Ff). (4.0. 1 1)

We deduce from (4.0. 10) and (4.0. l l) that

~te2t c Sj (t)  2 ce 2t c (Sj (t) - (4.0.12)

and, if the logarithmic Sobolev inequality is satisfied,

~te 2t c S j (t )  4d ce i1° . (4 . 0 . 1 3)

(vi) follows from the integration with respect to the time variable.
o

4.1 Properties of logarithmic Sobolev inequal-
ity

We begin by showing that, similarly to the spectral gap inequality, the logarith-
mic Sobolev inequality has the product property.

Theorem 4.4 Let (p;);=1,2 be two probability measures on probability spaces
satisfying the logarithmic Sobolev inequality with coefficients (c; , d;);-1 2 for the
infinitesimal genemtors (£;, I = 1, 2). Let £ be the genemtor on thl product
space Qi x Q2 defined as in property 2. 5 and ri its carré du champ. Then, the
product probability measure pi © p2 satisfies

 (4. 1 . 14)
with c = max(ci , c2 ) (4 . 1 . 1 5 )

d = di + d~ (4. 1 . 16)
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for any non negative function f for which the right hand side of ~.~.~~ ~ fi-
nite. Consequently, if  is a probability measure satisfying a logarithmic Sobolev
inequality with a coefficient c  oo and d = 0, then the product probability mea-
sure satisfies the logarithmic Sobolev inequality with the same coefficient c
for any integer number n.

Exercise 4.5 (Gross) Deduce from the second part of the exercise 4.3 and
property ~.~ that the Gaussian law satisfies a logarithmic Sobolev inequality (see
/-~.
Hint: .’ Use the central limit theorem.

Proof : Let f be a bounded measurable function on ~i x ~2 in the domain of
£. Then, using the logarithmic Sobolev inequality for the probability measure

we obtain

~ ~2 

Applying the logarithmic Sobolev inequality to g = 1(f2) and the Cauchy-
Schwarz inequality, we deduce

f2
 

+2(d1 +d2) 2 ~ 1(f2).

We can estimate the last term of the above inequality by noticing that

= 

= h~~/’~(~)Pr,2(~,~) (B/~’(7~(~) - 
~ lim2014 ~2(~)~,2~,~)~i(~)(/(~,~)-/(~,~))~
= 

where the last inequality follows from the Cauchy-Schwarz inequality. We hence
have shown that

2 f2

~ 2c1 2 0 f) + 2c2 2 ~ 1(03931,2(f, f)) + 2(di + ~ 1(f2)

 



40

which was the announced statement.

o

The logarithmic Sobolev inequality is also stable under perturbation.

Property 4.6 Let U be a bounded measurable function on a probability space
(Q, £, p) . Assume that p satisfies the logarithmic Sobolev inequality with coeffi-
cients (c, d) for an infinitesimal generator £. Then

d U i* 1 ZUe-Ud  With Zu * e-Ud
satisfies the logarithmic Sobolev inequality for the same generator £ with coeffi-
cients bounded above by with osc(U) = sup U - inf U.

Proof : The proof is based on the formula

log q> = $kl P (f2 log( I > - f2 + t)J1. t~0 t

which is easily checked. Moreover,

§(t, Z) * f2(x) log( - ) - f2(x) + t * t (Z(t, Z) log Z (t , Z) - Z(t Z) + I )t ’ ’

with z(t, z) = (f2(x)/t), is clearly non negative. Hence, we can use (2.0.4) to
deduce

U(f2 log f2 Uf2) ~ eOSC(U) (f2 log f2 f2) ~eOSC(U)(c (03931 (f, f) + d (f2)).

(4. 1 . 17)
By further use of (2.0.4) , we finish the proof of the lemma.

o

we recall that for a finite volume Gibbs measure with finite range interaction
we could improve the estimate of property 2 .6 for the spectral gap inequality. In
the next exercise, we propose to generalize this result to the logarithmic Sobolev
inequality in the discrete case.

Exercise 4.7 Let v be the uniform measure on (-I, +I) and A = [-L, L] x
[-i, i]d-I for (I, L) e (IN*)2, l  L. Let U(z, y) be a function on (-I, +1}2 and
set

H£ (z) = £ U (z; , xj) + £ U (z; , wj ) .
;,jgA,[I-j[=I iEA,jEAC,[I-j[=1

~~~ 

* £~~’~x A

Then, with fii ( f, f) = if 8; f(U) = f(Ui , ..U;-i, -U;, U;+i , ..) - f(U),
prove that there exist two constants (c, C) e (0, oo) depending only on U so that
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for every 03C9 ~ 03A9, 03C9 satisfies a logarithmic Sobolev inequality for the carré du

champ I‘1 with coefficient bounded by .

Hint : Choose a lexicographic order (ia, j E {1, .., of A as in property
2. 7. Putting Ak = ~ij, j  1~} and, for a non negative bounded function f,
f k (~) _ ~ fo = f ~ write

_ fk l~g . .PA k=0 fk+1

Using the previous proof and the product property ,~.,~, show that there exists a
finite constant C such that

~Ak+1 fk fk _  ~Ak+1 s~ 

Remark that there exists a finite constant D such that

 + D 03C9k ( f _ EAk f)2

and conclude by property 2. 7.

The next exercise links the logarithmic Sobolev inequality with a property of
concentration of measure

Exercise 4.8 (see e.g. ~66~, [1]) Let (S~, E, be a probability space with a
probability measure u satisfying the logarithmic Sobolev inequality with coeffi-
cients (c, o) for a carré du champ rl satisfying the Leibniz rule. Show that for
any z > 0, any measurable function f satisfying , f ) ~ ~~  oo,

~(ex~.f ~~f )) )  z~ 
.

Hint : Show that

~z1 z lo g 
by applying the logarithmic Sobolev inequality to g = .

For other connections between logarithmic Sobolev inequalities and the concen-
tration of measure phenomenon, we refer the reader to [11] and (6fi~. .

4.2 Logarithmic Sobolev and Spectral Gap in-
equalities

We have the following relationship between logarithmic Sobolev inequalities and
spectral gap inequalities.
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Theorem 4.9 If JL is a probability measure satisfying the logarithmic Sobolev
inequality with coefficients (c, 0) , then ~ satisfies the spectral gap inequality with
a coefficient 

’

. 1 .
- 

c

Conversely, if  satisfies the logarithmic Sobolev inequality with coefficients (c, d)
as well as a the spectral gap inequality with coefficient m, then p satisfies loga-
rithmic Sobolev inequality with coefficients (c’, 0) where

"’ 

m

This result can be found in [87], (see also [23] or [112]).
Proof : The first result is obtained as follows. Let f E D(,C) be a bounded
measurable function centered with respect to tc. For e sufficiently small, 1 +
f f is a positive bounded function. Hence, applying the logarithmic Sobolev
inequality, we obtain

+ f f )2 log(1 + f f )2  f )) + + ff )2 + Ef )2. (4.2.18)

By Taylor’s expansion and identifying the first order terms (in f2), we get
+ f f )2 log(1 + f f )2 = + O(~3)

and

+ + ff)2 ^ + 

so that
 c (03931 (f, f )).

To prove the second point, it is enough to notice that for any measurable function
f,

p(f2 ~((f - ~f ) 2 log If _ -~f 2 2 ) + 2)!/ - ° (4.2.19)

The statement is then obtained by using both the logarithmic Sobolev inequality
and the spectral gap inequality in the right hand side. To show (4.2.19), note
first that for 0 it is equivalent to the following inequality

+ (1 1 + + t~)2 t2 ) _  + 2t 2 (4.2.20)

with .

t = 

~f - f~2 f 03C6 = f - f ~f - f~2
.

we shall use the following observations concerning 03C6;

= 0, ~(~2) = 1. . (4.2.21)
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Up to replacing § by -§, we can and do assume that t > 0. We shall bound
the second derivative of

~’~~~ ~ ’~ ~ ~ ~ ~~ii~~~ ~ °
Using (4.2.21) , we find

~’~~~ ’~~’~~~ ~ ~’~~ log ~~l~~~~ ~
and then

F"(t) = J.t(2/J2Iog (1 
+ t/J)2) + 4 - 4t 1 + t2.

Using Jensen’s inequality applied to the probability measure (03C62.), we remark
that

(03C62 2 log (1+ t03C6)2 03C62(1+t2)) ~ log  (03C62 2 (1+ t03C6)2 03C62(1+t2)) = 0
and since we assumed t > 0, we get

F" (t)  2 03C62 log 03C62 + 4.

Integrating twice with initial conditions F’(0) = F(0) = 0 gives the result.
Note here that in general F may not be differentiable. To circumvent this

problem one can apply the same arguments with

F, t> = ,1,2 +  1 + ti>21 log i»£>~i >
for some non negative real number 6, to show that

Fl’ (t)  2 03C62 log 03C62 + 4( 1 + 03B42)
and conclude as before with further use of the dominated convergence theorem.

o

Exercise 4.10 In the set up of property /. 6 and with the additional assumption
that the carré du champ ri( f, f) is equal to )V f|2, show that if U satisfies a
spectral gap inequality with coefficient m, U satisfies a logarithmic Sobolev
inequality with coefficients (c ’, 0) verifying

C’  C(1 + 1 4 ~~U~~) + 1 m((c~~U~2~ + 1)2 + d + ) ) U [ )cxJ) .

compare this result with the one obtained by property /.6.
Hint: : Setting pu = £ , and given a function f e D(£) centered with respect
to p, apply the logarithmic Sobolev inequality under p to the function g = pl f
to find

U (f2 log 03C1U f2 U (f2) ~ (c + 1 4~ log 03C1U~ ~) U (03931 (f, f)) +

(c~|~1 2 03C1U|2 03C1U~~ + c 2~~ log 1 2 03C1U~~ + d) U (f2) .
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4.3 Bakry-Emery Criterion
We shall assume in this section that the carré du champ rl of the generator
under .study satisfies the Leibniz rule

r~ (f~ gh) = rl (f~ g)h + r~ (f~ h)g.

This rule was already encountered previously but we shall now describe it
more precisely. First, let us consider the following examples.

Example 4.11 Consider the Brownian motion on the real line ~ or on the
unit circle S1, ,C = 0, and show that

03931(f, f) = |~f|2

satisfies the Leibniz rule. More generally, consider the operator

£ = aij~i~j - L.r 

with a positive definite matrix A = (az j )s j with real valued entries and some
vector (Qj )j and show that

_ 

a ~j

satisfies the Leibniz rule.
On the other hand, the Leibniz rule may not be satisfied if the state space

S~ is discrete; take S~ _ .~-1, +1} and ,C = a to be the discrete derivative;
8f (~) = f (-o~) - f (~). Then, show that

r~(f~ f) = if(-~) - f(~)12
does not satisfy the Leibniz rule.

More generally, considering a measurable space (~, E), a family of probability
measures on (S~, E), and the generators £,f(w) = vw f - f (W), , show that
the Leibniz rule fails.

Necessary and sufficient conditions for a semi-group to have a generator satis-
fying the Leibniz rule can be found in [62] and [86].

One of the consequences of the Leibniz rule is the following fact.

Lemma 4.12 Assume that rl satisfies the Leibniz rule. Then, for any entire
function v on R, we have

rl (g v ° f ) = rl (g , f) v’ ° f
for all functions (f,g) E D(,C).
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Proof : Since for any monomial function xn, n E N, one easily check

rl (g , fn = nr (9~ f) fn-1
the result is straightforward for entire functions. o

We notice also the following interesting fact .

Property 4.13 Assume that rl satisfies the Leibniz rule. Then, the last con-
dition (vi) of Gross’s integration lemma is equivalent to the others.

Proof : It is sufficient to show that, for any non negative function f, we have,
thanks to the previous lemma,

= log f)) = -4~r1 (f ~ ~ f ~ ).
Plugging this equality in the proof of Gross’s theorem [52] yields the result. o

Hereafter, we shall consider so called the carré du champ itere, (or simply
Gamma two), given, for f in the domain of £, by

~c=o

_ 1 ~ ,c r ~(f~f) - ,c f)}.

We shall define the Bakry-Emery condition by

Definition 4.14 We say that Bakry-Emery’s condition (denoted (BE)) is sat-

isfied if there exists a positive constant c > 0 such that

r2 (f~f) > _ 1 ~ (4.3.22)

for any function f for which rl ( f f) and r2 ( f f) are well defined.
We have the following characterization of Bakry-Emery’s criterion (see ~112~)

Theorem 4.15 Condition (BE) is satisfied iff for any t > 0,

(4.3.23)

for any function f so that rl( f f) and r2( f , f ) are well defined.

Proof : Let us assume that (4.3.23) is satisfied. Then, for any t > 0, we have

0 ~ 1 t
(e-2 ctPt03931(f, f)-03931(Ptf,Ptf))

= 

e-2 c t - 1 1 
Ptf1(!, f) 1 (Ptf1(f, f) - 03931(Ptf, Ptf)) (4.3.24)
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Taking the limit t ~, 0, we deduce, according to the definition of r2 that

0  -2r 1(faf) + 
that is, condition (BE).

Conversely, if condition (BE) is satisfied, for any t > 0 and s E ~0, t~, the
function 

~ ’

F s --~ 

is decreasing. In fact,

=  o.

In particular, F(t)  F(0), giving

Ptf)  Pt03931(f, f)

that is, (4.3.23). 
’

o

The main application of Bakry-Emery’s criterion is the following

Theorem 4.16 Let £, be the generator of a Markov semi-group Pt, t E R+
with carre du champ rl satisfying the Leibniz rule. Let ~ E so that Pt
is weakly ergodic, i. e

lim Ptf(03C9) = p - a.s. (4.3.25)

for any bounded continuous function f. . Then, Bakry-Emery’s criterion implies
that ~ satisfies the logarithmic Sobolev inequality.

Proof : Let f be a positive bounded continuous function so that = 1. We
set ft = Pt f and let

sf (t) = p(ft log.fi).
Under the weak ergodic hypothesis, we have

lim Sf (t) = 0." ’ ’

Hence,

Sf(0) = - ~0 dtd dtSf (t) = ~0 dt 03931(ft, log ft). (4.3.2fi)

Next using the fact that Pt is symmetric together with the Schwarz inequality,
we get
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03931(ft, log ft) = 03931 (f, Pt(log ft)) ~ (4.3.27)

- ~ ri(f~f) 
’ 

Applying to the last term our condition equivalent to (BE) with the function
log ft we obtain

(Pt log ft, Pt log ft))1 2 ~ 2 ct Pt03931(log ft, log ft)) 1 2 (4.3.28)

= e- 1 ct ( ft03931 (log ft log = e- 1 ct( 03931 (ft log ft ) )’
where in the last stage we have used symmetry of the semigroup and the Leibniz
rule for 03931. The inequalities (4.3.27) and (4.3.28) imply the following bound

_  e-2 ct 03931(f,f) f = ( 4.3.29 )

Using this one arrives at

sf(o)  ~0 4e- = f )

which completes the proof. o

One can also show that

Proposition 4.17 If (BE) is satisfied,

Pt(f log I)  2c(1 - + Ptf log Ptf

for any function f for which the. right hand side is well defined.

The proof of this proposition is very similar to the previous one. It is given by
Bakry and Emery, ~fi~, Proposition 5.

Let us give a few examples where (BE) is fulfilled.

Exercise 4.18 . Let U be a twice continuously differentiable function so that
Z = f is well defined and finite. Set

= 

Let,C = ~-U’(x).8x. . Show that, if U" is uniformly bounded below by a positive
constant, Bakry-Emery criterion holds.

. Let ~~ be the Gaussian measure on with covariance

G = Given U E such that

oo,
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we define

/~U ( f ) _ .’~ ~ 
°

Let ,C be the Markov generator given by

f = 0394f - 03A3 p=ax;f

and, with M = G-1, ,
03B2i = ~xiU + Lr Mij xj .

j

Then, ~U is reversible for ,C. Show that

03931(f, f) = |~f|2
and

r2(f, f) _ ~ + (a~;p~)a~~f .

s,j

Prove that, if we denote by N(x) the matrix with entries and if for alt
x, the smallest eigenvalue of the symmetric matrix M + N(x) is bounded below
by (1/c), then rl satisfies (BE) with coefficient c. In particular, satisfies the
logarithmic Sobolev inequality with coefficient c for the carré du champ rl.

The interest of the Bakry-Emery criterion is also to obtain log-Sobolev inequal-
ities in smooth compact Riemaniann manifolds. We refer the reader to the
original article [6], as well as to the more recent paper ~16~, for such applica-
tions.

Exercise 4.19 S~ = . For a finite subset A of ~, a constant m 0 we
denote by the Gaussian measure on IR with covariance

G = + 

where Oan is the discrete Laplacian with Dirichlet boundary conditions. In other
words, if we put xn = and i N j for |i - j| =1, E 03A9,

uG - 

1 
an exp{-1 2 03A3 (xs - xj) 2 - m2 03A3 x2i }dxn(dzA) = p exPl- , £ (z; - zj )2 - q £ x2i}dx

with x|c = Let V be a function bounded below and set

Un (xn) _ ~ V (xs ) .

iEA

For instance, for ~ > 0, V(x) = ax4 + ax2. . We can then define

- ~U l n) = e ~G ~ A)
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Following the previous example, see that if, for some c > 0,

-0394~03B4 + m2 D x > -1 1

with D the diagonal matrix Dij (x) = and the inequality is understood
in the sense of quadratic forms, then satisfies the logarithmic Sobolev
inequality with coefficient bounded by c. Moreover, if the following limit exists

~c = lim 
UJ 

,

 also satisfies the logarithmic Sobolev inequality with coefficient bounded by c.
Let us remark that such a measure may not be unique and that then the

logarithmic Sobolev inequality is satisfied by any such limit. The proof of the
existence of a limit is in general not easy. We note that for any A and

Ao C A, the conditional expectation knowing the u-algebra generated

by i E Ao}, is independent of A and is defined by ~~, (~~o °’W (~)) (exercise~.
One can use this idea to define the in finite volume measure as follows.
Let a family of conditional expectations w E S~, A C be given so

that

(1) E03C91 = 1 ~03C9 ~03A9,  ~ Zd
(2) w ~ E03C9(f) is 03A3c measurable for any bounded measurable function f .

(3)If Al c A2, then En2 C EAi and

= E~~ f .

The Gibbs measures in in finite volume ~C associated with the specification
w E S~, A C are described as the solutions of the equation (DLR )

~.

This equation may have several solutions.

To be more precise, let us consider the case where U = 0. Denote by
the conditional expectation of with respect to . The fam-

ily of these conditional expectation is called local specification. We can consider
the Gibbs measure associated with this local specification. It is not hard to check

that

E03C9 G (f|03A3c) _ (f(. + (4.3.30)
where

( G-103C6~03C9(i) 
= 0 Vi e A

= ~j E c

Consequently, for all global solutions ~ of

= 0 ,

the probability measures

= uG(f + ~))
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have the same conditional expectations. Hence, they define Gibbs measures in
in finite volume with the same local specification. All these measures satisfy the
logarithmic Sobolev inequality with the same coefficient.



Chapter 5

Logarithmic Sobolev
inequalities for spins
systems on a lattice

This chapter will be concerned with logarithmic Sobolev inequalities for Gibbs
measures. We begin by describing the statistical mechanical context in which
we shall work. In particular, we define local specifications and the associated
Gibbs measures. We introduce as well some Markov semi-groups (via their
generators), satisfying the detailed balance condition with respect to a Gibbs
measure. Then, we present a general strategy to prove logarithmic Sobolev in-
equalities for a given Gibbs measure with Dirichlet forms of relevant generators.
The application of this strategy requires to check four general conditions. In

section 5.3 we show that they are satisfied for all one dimensional systems with
bounded finite range potential. For "geometric" reasons, this case is slightly
easier to handle than the higher dimensional case. In section 5.4, assuming
some mixing condition, we show that the requirements of the general strategy
listed in section 5.2 hold for systems with bounded finite range potential in
dimension d > 2. The proof is similar to that of section 5.3, except that one
needs an extra argument taking into account the mixing condition (based on
the so-called sweeping out relations defined in paragraph 5.4.1). .

5.1 Notation and definitions, statistical mechan-
ics

In this chapter, we shall consider random variables, (representing spins or parti-
cles in applications and therefore frequently called by these names), with values
in a Polish space M. We shall assume that either M is a finite set, (frequently
being simply given as a two point set M = {+1, -1}), or a finite dimensional
smooth (compact) connected Riemaniann manifold. These two cases will be
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called discrete and continuous settings respectively. In most proofs, we will
consider in more detail the discrete case which is usually more complicated to
deal with (mainly because the discrete derivative used there does not satisfy the
Leibniz rule). The spins will be "located" on the lattice for some positive in-
teger number d E W. We equipp with a distance d(x, y) = [
for (x, y) in Tld. The notation A ~~ Zd will be used to say that A is a finite
subset of Let 0 = be the state space. For A CC ~, we shall denote
by

the projection defined by

0 -+ M"

In particular, the projection corresponding to a single point set ~i} is called
a spin at site i. For A C we shall denote by EA the smallest 03C3-algebra
for which all the spins i E A} are 03A3-measurable. We shall say that a
function f on H is localized in A if it is EA-measurable. We denote by A f (or
alternatively A(/)) the smallest subset of for which f is localized in A J .
Later on, a function f for which the cardinality of Aj is finite will be called a
local function.

Let § = be a potential with finite range R, ’ that is a family
of continuous functions on 0 so that for all X C ~~ is localized

in X and ~~ = 0 if the diameter of X is greater than R. We shall assume
hereafter that 

.

~~~~~ = sup ~  oo. (5.1.1)

The energy UA in a finite volume A CC  is then well defined by

UA = ~ . (5.1.2)

Let v be the uniform measure on M and let

= 

We can define a local Gibbs measure in a finite volume A and with boundary
conditions 4J E S2 by

_v 
. (5.1.3)

Frequently it will be convenient to use the following notation

= 
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We shall call local specification the family of local Gibbs measures
°

By J.l, we shall denote a Gibbs measure in infinite volume associated to the
local specification that is a solution of the (DLR) equation
(DLR standing for Dobrushin, Landford and Ruelle), which is given by

(5.1.4)

for all local bounded measurable function f and all Ace r.
For an introduction to the theory of Gibbs measures the reader may like

to look at the classical reference [80]. Concerning the uniqueness versus non
uniqueness problem (a phase transition phenomenon) the literature is very wide;
the reader may consult [96] and [45] for more detailed discussion and further
guide to the literature. We note that, except in the last chapter of these notes, we
will only be concerned with Gibbs measures for which log-Sobolev inequalities
hold for all local Gibbs measures with uniformly bounded coefficients. This

entails the uniqueness of the infinite volume Gibbs measure.
The Markov generators under study will be defined as follows. In the con-

tinuous setting where we consider a smooth connected Riemaniann manifold
M equipped with the Laplace-Baltrami operator A and a gradient ~, for any
i E ~, we set A, and ~; to be the corresponding operators acting on the ith
variable We shall then consider the operator defined on the set of local twice
continuously differentiable functions by

,Cf = ~ (~~ - 

with A any finite subset of Tld so that > R.

In the discrete setting, for any finite subset X C ~, we introduce a generator
by means of the local Gibbs measures as follows

rw = ~ 

with
= f(w)

for any j E T~d and f any integrable local function.
It is not hard to see that  is reversible for such operators. Moreover, ,C

(resp. ~C~x~) is non positive and with dense domain in L2(J.l) for any Gibbs
measure ~ satisfying (5.1.4) for the specification Consequently,
the semi-group Pt = et~ (or Pt = is symmetric and leaves J.l invariant.

We shall call in the sequel the standard Dirichlet form the quantity
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with

|~f|2 = £ 

where in the discrete setting, we put ~ f = with

av; f = ~ ~ ~ ~~ ~)dv(~) - 

We shall set, whenever it makes sense,

|||f|||=(~~if~2~)1 2
and say that a function f is of class C1 iff IIIIIII is well defined and finite. E( f, f )
is clearly well defined for any function f of class C1, .

Exercise 5.1 Show that if ~ is a bounded potential with finite range, for any
X CC r, the operator ,C~X~ has a quadratic form equivalent to
the standard Dirichlet form, that is that there ex~ists two constants cX and Cx,
0  cX ~ CX  ~, so that

f)  f)  f). .

5.2 Strategy to prove the logarithmic Sobolev
inequality 

’

To prove a logarithmic Sobolev inequality for the Gibbs measure p, the idea is
to use the local Gibbs measures to define an auxiliary Markov chain on (0, E)
with transition matrix E satisfying the following conditions

(Ci)
/lEI = ~f

for any bounded measurable function f .

(Cii) There exists a positive finite constant c so that

/l (E(I log f) - (Ef) log(E/))  2c~c~~f z12.

(Ciii) There exists A E (0,1) so that

(2  12. .

(Civ) Denoting for any bounded measurable function f, , the se-

quence of measurable functions given by f o = f and fn = 
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lim fn = (f)  - a.s.

Before proving that a construction of such transition matrix E is possible
and giving a sufficient condition for this, we first show that conditions (C) imply
that the Gibbs measure p satisfies a logarithmic Sobolev inequality.

To this end for a fixed non negative function f we consider the sequence ( fn)
given by

10 = f ~ fn = E/n-1.

We notice that by using (Ci), we have

log :f) = r (E(f log f) - ( E f ) log(Ef)) +  ( E ,f ) lo g (Ef) f). (5.2.5)

and hence by induction

-) _ (E (fn logfn) - (Efn) + log ) (5.2.6)

On the other hand, by (Cii),

(5.2.7)
Applying (Ciii), we obtain by induction that

|~f1 2n|2 ~ 03BB |~f1 2n-1|2 ~ 03BBn |~f12|2. (5.2.8
Combining (5.2.6), (5.2.7) and (5.2.8), we get for any N E W,

(f logf f) ~ 2c 1 - 03BB |~f12|2 + (fN logfN f). ( 5.2.9 )

Finally, hypothesis (Civ) implies that the last term on the right hand side of
the inequality (5.2.9) goes to zero as N goes to infinity. Indeed, the convexity
of :c 2014~ x log x together with Jensen’s inequality imply that log ~ ) > 0 .

Since we also have that for any E > 0, any / > 0 which is not identically null,
f N log is uniformly bounded, the monotone convergence theorem implies
that

log fN f) ~ lim sup (fN log fN +  f) = (f)log( f +  f)
which allows us to conclude by letting E going to zero.

Hence, we proved that ~ satisfies a logarithmic Sobolev inequality with co-
efficient bounded by c = 1 ~ ~ .
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5.3 Logarithmic Sobolev inequality in dimen-
sion 1 ; an example

Log-Sobolev inequalities on the one dimensional lattice were first studied for
discrete spins in [60]. In that paper a bound on logarithmic Sobolev inequality
coefficients (logarithmically growing in the dimension of the configuration space
bounds) were obtained and used to prove a form of ergodicity of the associated
semi-group (although in general not an exponential decay in the uniform norm).
The first proof of logarithmic Sobolev inequality on the infinite one-dimensional
lattice was obtained in [110].

In this section we give a new proof of that result (with improved estimates
on logarithmic Sobolev inequality coefficients). .

Theorem 5.2 Assume d = 1 and consider the local Gibbs measures on S2 =

~-1, constructed with a potential ~ with finite range R as in (5.1.~~. Then,
the unique Gibbs measure ~c on S~ solving the corresponding (5.1.,~~ satisfies the
logarithmic Sobolev inequality.

Consequently, a logarithmic Sobolev inequality is satisfied (with possibly differ-
ent coefficients) for any quadratic form associated with the generator for

any finite subset X ~~ Z (see exercise 5.1). The semi-groups = are

thus hypercontractive (and therefore, as we shall see later, uniformly ergodic).
In dimension greater or equal,to 2, such a result is obtained in general only

under some additional mixing conditions that will be considered in the next
section.

5.3.1 Construction of the auxiliary Markov chain
Let

Ao = [0, 2(L + R)~
with R the range of the interaction. L is an integer number the value of which
will be properly chosen later. For k E Tl, set

Ak = Ao + 2k(L + 2R).

With such a choice, we have 
’

dist(Ak , Ak+1) = 2R. (5.3.10)

For I = 0 or 1, we shall denote

0393l = ~k~Z{k + l(L + 2R)} .

In this manner, we have constructed two sets (each composed with disjoint sets
at a distance greater or equal to 2R), the union of which covers the whole lattice.

(5.3.11)
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The goal of this construction is to compare the coefficient of the log-Sobolev
inequality satisfied by p, with the maximum of those satisfied by (Er" l = 0,1)

E~ = Er~ _ > 1= 0,1. .

with properly chosen L (sufficiently large).
The coefficient in the inequality corresponding to E~ can easily be estimated

thanks to the product property and the estimates of the log-Sobolev coefficients
for local Gibbs measures.

We define a Markov chain on (S~, E) by the transition matrix

E‘~ = 

By definition E preserves the unit and positivity. Moreover, E preserves the set
of cylindrical functions. .

5.3.2 Checking conditions (C)
Condition (Ci) is clearly satisfied by E since, by property of local Gibbs mea-
sures,

E1E0f = = p,f. 

Conditions (Cii), (Ciii) and (Civ) result from conditions (a) and (b) of the
following auxiliary lemma.

Lemma 5.3

(a) For any finite subset A of T~, there exist non negative constants B1 (A)
and B2 (A) so that for any i we have

12  12 + 12

for any non negative function f for which the right hand side is finite. Moreover,
for any 1 E W,

Bl (1) = sup B2(1) = sup 

(b) There exist Lo E N and a constant a E (0, 1), satisfying

 1

for l = 2(L + R), with L > Lo, such that for any finite A CC 7~ of size I and
any A C A for which dist(A, A~) > L - R, for any i we have

12  03BB |~f1 2 12

for any differentiable 03A3c~-measurable function f > 0

We shall first show that
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Proof of (Cii) assuming lemma 5.3 (a)
Remark that

= ]

(5.3.12)
Since, for any 03C9 ~ 03A9, Eg (resp. is a product measure, the product property
of the logarithmic Sobolev inequality, (theorem 4.4), shows that Eg (resp. E~)
satisfies a logarithmic Sobolev inequality with coefficient bounded above by

co = sup sup .

In particular,

 2c0E0|~03930f1 2|2 (5.3.13)

and

E1[ E0(f)log E0(f) E1(E0f)] 
~ 2c0E1|~03931 (E0f)1 2 |2 . (5.3.14)

Moreover, by definition of Eo, we have

= !V,(Eo/)~!’ (5.3.15)
i~03931 i~03931B03930

Since the range of the interaction is finite, it is not hard to see that for any
x 6 riBro, there exists a subset of Fo with length larger than or equal to
 = 2(L + R) so that )V,Eo/! = Then, we have

~V,(Eo/)~  . (5.3.16)
Assuming (a) of the lemma and setting for short ~i = and ~2 = ~2(~))
we deduce from (5.3.14) the following bound

L Eo (f) log E0(f) E1(E0f) ]
~ 2co ~ 

i~03931B03930

= 2coBi ~ (5.3.17)
’eriBro ’~ro



59

Plugging (5.3.13) and (5.3.17) in (5.3.12), we conclude that

2coBi E ~~Q~( f) ~ ~2
i~03931B03930

+2co(1 + RB2) ~ ~~~~(f ) ~ ~2
iero

(5.3.18)
which gives (Cii) with c = c0 max{B1, 1 + RB2}.

Proof of (Ciii) assuming lemma 5.3 (a) and (b)
Let us notice first that Eo f is Er1 Bro measurable and that E f = E1 (Eo f ) is

measurable. By our choice of ro and rl,

dist(03931B03930,03930B03931) = L

and

(5.3.19)
i~03930B03931

For any i E following the arguments of (5.3.16) and denoting by A(i) the
corresponding subset of ri with diameter I = 2(L + R), we deduce that

 a 12. (5.3.20)
Since A{’~ is at a distance smaller or equal to R of i E roBri, the function Ero f
is localized in a subset of riBro at distance greater or equal to L of i. Thus, if
L > Lo for suitable Lo  0, we can apply lemma (b) to obtain

(5.3.21)

Introducing for any j E A(’) the sets A(j) C ro (in a similar way as A~’~), we
have

| ~j (E0 f)1 2 |2 ~ |~j (E(j) f)1 2 |2.
We deduce from (5.3.21) by lemma (a) that

~ (5.3.22)

By (5.3.20) and (5.3.22), and since the diameters of A~~~ and are equal to
I = 2(L + R), we conclude that

~c~0~(f)~~2+aR2B2~~~p;(f)a~2. (5.3.23)
i~03931B03930 i~03930

Hence, (Ciii) holds with

03BB ~ 03BBRmax{B1, RB2}.
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Proof of (Civ) assuming lemma 5.3 (a) and (b)

According to theorem 4.9, Eo and E1 satisfy a spectral gap inequality with
coefficient bounded below by (1/co) so that

(f-Ef)2 ~ 2 E03931 (Ero f - Erl E03930f)2 + 2 E03930 (f - Erof)2
 2co + (5.3.24)

with the constant K obtained from lemma 5.3 (a). Now, if f o = f and fn+1 =
E fn, we deduce from (Ciii) that

|~f1 2n I2  

which converges towards zero as n goes to infinity. Hence, (5.3.24) implies that
the sequences and converges p-almost surely by the
Borel-Cantelli lemma. The limit of = f n - p ( f) is therefore constant,
and hence identically zero.

Proof of Lemma 5.3(a)

Let us recall first that, if v is the uniform Bernoulli law on {-l,1},

V’jF = ~.F-F=~.F-F)
with TjF := where

03C9(j) := -03C9k for k = j,
:= ( +03C9k otherwise.

We have the following discrete analogue of the Leibniz rule

= FVjG + (5.3.25)

In particular,
Vj(F2) = 2Aj(F)VjF (5.3.26)

withwith 

Aj(F) := 1 F .

Consequently, to estimate we have to find a bound of the form

2Aj x desired terms.

Let us recall that

, - UA
EAf = With .
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Hence, we have that for any j E A~, ,

= 

= vn + f~j03C1]
= + (5.3.27)

In the first term of (5.3.27), one of the boundary conditions is inverted. To

estimate this term, we use the discrete Leibniz rule D j ( f ) = to

obtain by Cauchy-Schwarz’ inequality

2 (5.3.28)

We note that

03C1-1039BTj03C1039B = e-2~jU039B E039B[e-2~jU039B] ~ e4~~jU039B~~, (5.3.29)

for any non negative measurable function F

(7j-EA)(F)  

Thus, we can bound the first term on the right hand side of (5.3.28) by

2((7,EA)(~(/~))’  ((~aEn)(f))’ ~" ((~’~En)(T~f))~
 (5.3.30)

The latter inequality together with (5.3.28) yields

(EAIVjf!12f . (5.3.31)

To estimate the second term in the right hand side of (5.3.27), we first notice
that and henceforth

EA (f03C1-1~j03C1) = EA [(f - E039Bf)03C1-1039B~j03C1039B] (5.3.32)

- - 2 1 (f(~) 
We immediately obtain the following bound

(5.3.33)

~ sup|03C1-1039B~j03C1039B(03C3) - 03C1-1039B()|1 2 |f(03C3) - f()|dE039B(03C3)dE039B().
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Moreover,

1 

sup|03C1-1~j03C1(03C3)-03C1-1~j03C1()| = 1 2sup| E[e-2~jU(03C3)] - E[e-2~jU()]
 e4~~jU~~. (5.3.34)

Furthermore Cauchy-Schwarz’ inequality shows that for any f > 0

( |f(03C3)-f()|dE(03C3)dE()
2

 + f (~))2 E® f ~’ 
 

 16(A~ En[ f j)2En[(~ - ] (5.3.35)

where the last inequality is trivial. Finally, we saw in property 2.7 that there
exists a finite constant C so that for any A cc Tl,

EA[( f(03C3) - Ef)2] _ 12j. (5.3.36)
From (5.3.33)-(5.3.36), we deduce

 (5.3.37)
Plugging this estimate into (5.3.27) and using (5.3.31), we obtain

~ nf 

 + ~5.3.38)

This ends the proof of lemma 5.3 (a) with the constants

Bl (A) = 2 sup BZ(A) = 

~

Proof of Lemma 5.3 (b)
The proof of this second property relies on several facts already developed in
the course of the preceding proof. In fact, going back to equation (5.3.27) of
the previous proof but with f being £,-measurable with a set A C A such that

dist(Ã, AC) > L > R,
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we find out that the first term on the right hand side of (5.3.27) is equal to zero.
Hence, we need only to improve the estimate of the second term.

To this end, let us remark that, if R is the range of the interaction, for j at
positive distance smaller than R from A, is 03A31-measurable for

Ai = R}.

Thus, we can replace the estimates (5.3.33)-(5.3.35) by the following bound

I 1

 4 

with the notation Var xG = G’(S)~.
Moreover, if f is localized in A, denoting by E - the restriction of EA to

E., we have 
’

E~(/Y - E~/Y)’  (5.3.39)

with m(A)*~ ~ according to property 2.7. Hence, we obtain that

(5.3.40)

where 

03BB = 1 8 (Var(EB(03C1-1~j03C1)))2. m()-1.
In dimension d = 1, we have the following estimate

 e-~(~’~)-~C(~), (5.3.41)

for a finite constant C(~) which only depends on the potential ~. This result
is standard (see [45] and [90]) and is given as an exercise below.

As a consequence, since Bi(/) and ~(~) grow at most polynomially with
1 = 2(L+R) according to the previous estimates, we can choose L large enough
so that

{ (var~(E~(~’V~A)))’ ’~(A)-’}  1

where the supremum runs over all the sets (A, A) such that A C A; (A  2(L+R)
and ~(A,A~) ~ L - R. The proof of the second point of lemma 5.3 is thus

complete. ~

Exercise 5.4 Proof of estimate (5.3.41). Hints: Assume that f is localized in
0 ~ [ao, bo] and let A = [a, b] be so that Ao C A. Note that, by anti-symmetry
properties, if A n A(f) = 0~

= / 0 /(!/))
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= 0 (cr(~2/)(/(~) - f(y)))
with

- 

G~~(.r,~/)= 

= ~x~
Consider an increasing sequence of subsets A~ = [a, / = 1,’’., ~ so that

+ R + 1  60. Denote fi = EA,/, Gi = Gl and show by induction
that

E03C9039Bkf - E039Bkf = E03C9039Bk ~ E039Bk((Gl).(f - )
to deduce

~E03C9039Bk(f) - E039Bk(f)~~ ~ 
~Gl~~Var(f).

~=1

Show that when the state space is finite and the potential $ uniformly bounded,
for a constant M > 0.

5.4 Logarithmic Sobolev inequalities in dimen-
sion d > 2

In dimension ~ ~ 2, log-Sobolev inequalities for local Gibbs measures with
constant bounded independently of the volume can be obtained when some
mixing conditions are satisfied. This last property gives a spatial decorrelation
which roughly speaking allows to approximate the system by a system of par-
ticles which are interacting only in cubes of finite size (for proving logarithmic
Sobolev inequality is simple).

This rough idea was developed in different ways in the literature ; the reader
may look at [69], [74], [98] and [110]. Here we present a formalism quite close
to the one developed in [98] and which is based on the strategy described in the
beginning of this chapter. It will clearly rely on a key intermediate property
characterized by what we shall call sweeping out relations. (One should realize
that our strategy does not rely on an a priori spectral gap property of the Gibbs
measure as described in [100].)

In order to illustrate the general considerations above, we will begin by
describing the so-called sweeping out relations and show how they lead to log-
Sobolev inequalities. Later we shall show how these relations can be deduced

from strong mixing hypotheses.
We shall again restrict ourselves to the setting introduced at the beginning

of this chapter where we are given a local specification A CC described

by a finite range potential ~. Later we also consider the case where the range
of the interaction is infinite.
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5.4.1 Sweeping out relations
We shall say in the following that sweeping out relations are satisfied for a finite
subset Xo of if
For any set A = {j + Xo} for some j E ~, there exist constants ~ E (0, oo), ,
such that for any i E ~BA so that R,

+ ~ 
"

jEAL.ur{a}
(5.4.42)

with

 (5.4.43)
where D, E E (0, oo) are finite constants which are independent of i, j and A.
Here, in the discrete setting q; = v; (x; ) where v; is an isomorphic copy of the
uniform measure on the finite set M (acting on the particle Xi at site i~, whereas
in the continuous setting qi equals identity.

Let us note that in the following, we shall always restrict ourselves to cubes
Xo and shall subdivide large subsets A (or even T~d itself) in small cells of
the type { j + Xo, j E r}. In this way, we shall obtain bounds on log-Sobolev
coefficients for E~ (or ~) in terms of the log-Sobolev coefficients of the local
Gibbs measures {Exo+j,j E r} when the sweeping out relations are satisfied
for Xo. . The strategy is then to optimize on the choice of Xo . . The fact that

we choose homogeneous partitions is of course irrelevant, except that it helps
to write the formulae more easily.

5.4.2 Proof of logarithmic Sobolev inequalities assuming
sweeping out relations

We assume in this part that the sweeping out relations are satisfied. M shall be
either a connected compact and smooth Riemannian manifold of finite dimen-
sion or a finite set.

To obtain log-Sobolev inequalities, we shall follow the strategy of section 5.2
and first define a suitable auxiliary Markov chain II, analogous to the chain E
studied in the last section.

To this end, for an integer number L E N, for k E ~, we denote by
Xk m k + (~0, 2(L + R)~)d, the translation by the vector k of the cube Xo =
~0, 2(L + containing the origin. Later on it will be convenient to represent
s E N as follows s = ~~=1 ". d 12~-1 with a family C 

We denote 7. = {k E E (L + 2R)vs + (2(L + and T = 

Set .

kET,}.

IB is the union of disjoint cubes of shape Xo at distance greater to 2R of each
other. Let us also remark that covers It is important to note
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that, by construction, for any i E there exist an s E (0, ... , 2~ 2014 1} and a
cube in Xk C rs such that i E Xk and (L/2).

Setting Es = we shall consider in the following

n( f)(~,) ~ (5.4.44)

We shall assume hereafter that the local Gibbs measures satisfy a log-
Sobolev inequality with coefficient c E (0, oo) independent of k E 

Exlc flog f - Exlc f logExlc f  2c Exlc ~v f a (2 (5.4.45)

for any non negative function f of class This assumption is naturally satisfied
when the local specification is defined by a finite range potential ~ according
to property 4.6 ; the constant c is then bounded by if c° is the

log-Sobolev constant for the uniform measure v (see also exercise after 4.6).
Our goal is to prove that when sweeping out relations hold, II satisfies the

conditions (Ci)-(Civ) of section 5.2. By definition of the local Gibbs measures
it is clear that (Ci) is true. Hence, we need to consider conditions (Cii)

and (Ciii). .
Proof of properties (Cii) and (Ciii) assuming the sweeping out rela-
tions
In this part, we shall prove that

Lemma 5.5 If Xo satisfies the sweeping out relations (5.,~.,~~~, there exist finite
constants ~ E (0, oo) and c E (o, oo) sudh that

(5.4.46)
and

n f log f - (II f ) _ 2c II ~v’ f a ~2. (5.4.47)

Moreover, if there exists Lo > 0 such that for any L > Lo, any v E T,

 (5.4.48)

with constants D, E E (o, oo) independent of L, v E T, i E Y~ so that d(i, Y)  R
and of j E X U {i}, then we can choose L sufficiently large so that (5.4.46) is
satisfied with 03BB E (0,1). Consequently, if for n E we define inductively

f = nn = nO f = f ~ we have for any W E ~,

2~2014~n~~!v/~’ (5.4.49)

Remark 5.6: The constants (a, c) can be chosen as follows. Setting

~, , ~?~’~ = suP ~I;~~
S 
, 

B / 3 
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~(s)ij ~ 
... 

 03B1 (Xk(i))ij103B1 (Xk(j1))j1j2 ...03B1(Xk(js-2))js-2j

with Xk(j,) being the cube of rs-i at distance less than or equal to R from j,
for 1 = 0, ... , s -1. Then we can choose

c - 2dc sup A~~ )
sE~O,...,2d-1}

with

a(’) = b2e2d+1 ~~~Ilas ~(~) ~
with appropriately chosen constant b dependent only on M, and choose A =
~~2d‘1)
In a few cases encountered for instance in random media, (considered in Chapter
9), the decay (5.4.48) of the coefficients appearing in the sweeping out
relations for the local Gibbs measure EA is satisfied only for points (i, j) at a
distance greater than or equal to some typical length I(A) depending on A. For
the study of such situations in Chapter 9, it will be useful to make the following
exercise.

Exercise 5.7 Let us assume that for any cube AL = [-L, the decay (5.,~.,~8~
of the coefficients 03B1()ij appearing in the sweeping out relations for the local Gibbs
measure is satisfied only for cubes Yo C AL of side greater or equal to a func-
tion d(L) of L. Show that EAL satisfies a logarithmic Sobolev inequality with

coefficient bounded by Cd(L)2decd(L)d-’ for two finite constants (c, C) E (0, oo). .
Show in particular that if d(L) = A log L for some finite constant A, the log-
Sobolev constant increases at most polynomially with the side length of the cube
A in dimension 2.

Hints : Use cubes of side length of order d(L) to construct H, the bound on

log-Sobolev constants obtained in exercise 4.7 for the local Gibbs measures of
these cubes and the above controls.

Proof of lemma 5.5.
Let f be a differentiable function of L 1 (~c) . Putting! -1 = f and f k =

E03930 f for k = 0,..., 2d - 1, we first notice that

II f log f - (~ w f ) = ~ log ~-~1. .
s=0,...,2d-1 " ~~ ~

(5.4.50)
According to the hypothesis (5.4.45) and the product property of theorem 4.4,
Erk satisfies, for k = ~0, ... , 2d - 1}, a logarithmic Sobolev inequality with
coefficient bounded above by c. Consequently, we deduce from (5.4.50) that

03A003C9f log f - 03A003C9 flog IIw f  2c 03A3 (IE2d-1...(IEs |~0393sf1 2s- 1|2))
jt=0,...,2~-l

(5.4.51)



68

The sweeping out relations are now going to be useful to control the gradient
terms in the right hand side of (5.4.51). To this end, let us observe that for
any ! ~ IB, we have the following two possibilities: either ~ ~ IB-i and then

is null, or there exists a unique ~ = ~(,) c r,-i so that ~ ~ X~,) and
~(~~()) ~ ~ In this second case, we use lemma 5.10 (see the next section)
which tells us that

= |~i(E0393s-1BXk(i)fs-2)1 2|2 (5.4.52)

~ 

with a finite constant &#x26;, equal to one in the continuous setting or when ~Mj = 2,
and otherwise bounded by ~/)Mj. We can now deduce from the sweeping out
relations and from Holders inequality that

 (5.4.53)

+ ~ ~~~E,E~,~,jV,/~~/
where

~’~). .’ B /
With (5.4.52), we thus obtain that

!V/~i!’ ~ ~ (~"~E~~?.!V/i2!’+ (5.4.54)

+ ~ ~’-’~E..E~,~,jV,/i2!’)j~X,(.)U{,} 
for any s ~ 1. We can reinterpret this last result in the following form

!v/~i)~~( ~ ((i-~)E.+~)~’’~~-i~!~/i2n. ./
(5.4.55)

Repeating inductively the above arguments, we find for s > 2

~i!’  (~)’ E~"~S~~ +~) ~~~~~tV~/~a!~
(*)

(5.4.56)
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where, (*) = {j1 E Xk(i) U i B rs-2I} U {j2 E U ,jl 1 rs-3} and where
we noticed that, since ji E Xk(i) U {i}, we did not need to write the term
(1 - By induction, we arrive at the bound

 6~-1 ~ (5.4.57)
jezd

with

~(s)ij ~ 03A3 
... 03A3 03B1(Xk(j1))j1j2 ...03B1 (Xk(js-2))js-2 j

(5.4.58)
and where Xk(j,) C for I = 0, ... , s -1.

Noticing that
(5.4.59)

and summing over all the i E r~ in (5.4.57), we conclude that for 1  s  2d -1,

(5.4.60)

with

r~(s) = ,

With (5.4.50) and (5.4.51), we obtain (5.4.47).
To prove (5.4.46), let us come back to (5.4.55) and note that for s = 2d -1,

we inductively obtain

f ~ u2  £ ... £
(5.4.61)

03B1(Xk(i))ij103B1(Xk(j1))j1j2...03B1(Xk(js-2))js-2j( 1- 03B4ij1) Ej1+ 03B4ij1) 03A0qj |~j f 1 2 |2.

Since = Zd, for any j we can find an s E { 0, ... , 2d -1 } so that j E r,

 (5.4.62)

where we used (5.4.59) to obtain the last bound. Summing up over all the

i E ~, we deduce (5.4.46) from (5.4.61).
Finally, to prove the second part of the lemma, we remark that under the

additional assumption (5.4.43), r~ can be chosen as small as one wishes as long
as L is chosen large enough. Indeed, by construction, for any j E there exist

r E {0, ..., 2~ - 1} and a cube Xk C rr so that for any j E Xk, d(j, Xk) > L/2.
Henceforth, in any path W;j - {i = jo, y E Xk(s)Uilrs, ..., jt E 
r~_~, ~ ~ ~, js E Xk(j.-1) = there is at least one couple of points
( ji_ 1, ji ) at distance greater or equal to L/2. This in particular implies that in
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the sum defining of there is at least one term  We
hence obtain the bound ~~-1 ~~r -

(5.4.63)
i

Since, under hypothesis (5.4.48), a is clearly bounded independently of L, we
can choose L sufficiently large so that A  1.

Finally, the last part of the lemma can be proved following (5.2.6)-(5.2.9)
but without bothering about the limiting Gibbs measure /~.

o

Proof of condition (Civ) when the sweeping out relations are satisfied
To show that IIn converges, as n goes to infinity, towards a measure we are

going to prove that f, n E ~ is a Cauchy sequence for any continuously
differentiable function f localized in a finite subset of Zd, uniformly in w E ~2.
This in turn implies the weak convergence of II" towards a unique measure ~c.
Indeed, given a finite subset A of 7l~ and considering the set ~’~ of continuous
functions f localized in A, we note that 0A is separable as is compact
since M is. Thus, we can consider a countable subset dense in

By the standard diagonalization procedure, we see that if n E ~
is Cauchy for any i E lN, uniformly in w E H, f s , i E ~ converges
simultaneously along some subsequence. The limit then defines a probability
measure. By the property of local Gibbs measures, p is independent of the choice
of the finite set A so that we can define /~ on the set H of all configurations.
Finally, uniqueness of p can be deduced from the uniformity of the convergence
with respect to boundary conditions. Hence, we need to prove that, in view
of (5.4.46 ), f, n E ~ is a Cauchy sequence for any f E A cc 
We can of course restrict ourselves to non negative functions f. . Let n, m E W,
n  m and a non negative function f E ~’~ be given. Then we have

I (5.4.64)
 sup|03A0nf(03C9) - I  |||03A0nf|||.

Moreover, by construction of II, IIn f is localized in a set An so that IAn I 
[diam(A) + n2(L + R)~d. Thus, we deduce that

iEAn

(5.4.65)
 1 ~ I0~ 

iEAn

where in the last line we made an inductive use of (5.4.46). Since the volume of
An increases at most polynomially in n, we conclude that, when A  
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goes to zero when n goes to infinity, which gives with the help of (5.4.64) the
desired result.

o

5.4.3 Proof of sweeping out relations
In this section, we relate the sweeping out relations (used in the previous part to
prove logarithmic Sobolev inequality), to strong mixing conditions satisfied by
local Gibbs measures. We first describe these mixing conditions and show that
they are equivalent to decay of correlations properties. Then, we prove that they
imply sweeping out relations. At the end of this section, we prove that mixing
conditions are necessary to obtain logarithmic Sobolev inequality for local Gibbs
measures with uniformly bounded constants. Thus, this last result holds iff
mixing conditions are satisfied. We shall finally see that mixing conditions are
satisfied in some situations such as for example a high temperature regime.

Strong mixing conditions

For a subset Y C Zd, we denote a semi-norm of f given by

|||f|||Y ~ 03A3~~if~~ .

iEY

Here, when M is a connected smooth Riemannian manifold, i7; f denotes as
usual the gradient operator acting on the variable at i, and, in case M is a finite
set, i7; f = . If Y = Zd, we use a short notation = In the

following, we shall measure the variations of a function f with respect to the
coordinates wy m i E Y) by

Vary ( f ) = sup I f (wY ) - I .
03C9Yc=03C9Yc

If Y = { j }, we simplify the notation as Vary(/) ) = Varj(f). . We remark that
Vary(/) ~ 21 I f I I ~ and that the variation of f is related to the triple semi-norm
by

Vary( f )  a|||f|||Y (5.4.66)
with, in the discrete setting, a  2 and in the continuous setting, a  sM =

supx,y~M inflx,y , with lx,y the length of a geodesic containing x and y and the
infimum being taken on the set of these geodesics.

Exercise 5.8 Prove (5..~.66~.
Hints : Proceed by interpolation between w and i5 by a sequence (for jk E Y,
k =1, ... , IYI a lexicographical order in Y ) such that each term of this sequence
only differs from the previous by one coordinate, to deduce that

Vary ( f )  ~ Var j k ( f ) .
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Prove the result for Y = ~ j~ and conclude.

With the above notations, we consider the following mixing conditions :

Strong Mixing Condition (SMC):
There exists a constant ~ E (0, oo) such that for any X C and any cube

Vary(Exf)  I (5.4.67)
with a finite constan t C (Y ) depending only on the size of Y . .

Let us point out that we shall only use in the sequel (SMC) for sets X
defined as the union of a finite number of sets obtained by translation of a given
cube Yo. As we will show below this condition is equivalent to the following
strong decay of correlations property

Strong Decay of Correlations (SDC):
There exists a constant 6 E (0,oo) such that for any functions f , g with

finite triple norm on r and, for any boundary conditions 1J , we have "

 l (5.4.68)
for a constant A E (0, oo) depending only on min(~X ~ fl 

We have the following property.

Theorem 5.9 The strong mixing condition (SMC) is equivalent to the strong
decay of correlations (SDC).

Proof : Let us first prove that (SDC)===~ (SMC). Fix Y C r, a set X C Y~,
two elements (w, W) E 0 so that = Syc and a function f localized in
Aj C X. . Since, by definition, the local Gibbs measures E ~) are all
equivalent to vx , we can write

EX ( f ) = E03C9X(03BE03C9,; f) (5.4.69)

with

03B603C9, = 
dE03C9X dEX

and EX (g; f) = - EX ( f ) EX (g) . In the case where the range of the
interaction is finite (say R), one easily sees that d(Y, A(~~~w)~)  R so that the
triangle inequality implies 

’

d(Af, > d(A f, Y) - R.

Applying (SDC) to (5.4.69) and using the last remark, we deduce that

~  I (5.4.70)
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with

(SDC) Conversely, for any functions ( f,g) on Q such that A f fl X
and Ag n X are disjoint, we have

EW x(9~f) = Ew x( E. xp,(9)~f) _ ( E. x~nf(g) _ E. xpf(9))(f _ f)) . .
Consequently, if (SMC) is satisfied, we obtain

I  (5.4.71)
 I

with A  2C. o

Study of sweeping out relations

We shall in this paragraph show that (SMC) results with sweeping out rela-
tions. In fact, we show in lemma 5.11 that inequality (5.4.42) holds with the
coefficients (ai~ ~) described in (5.4.80) and (5.4.81) respectively. We estimate
these coefficients at the end of the paragraph and show that mixing conditions
result with the decay (5.4.43) of these coefficients, second condition for sweeping
out relations to hold. To prove lemma 5.11, a key ingredient is the following
estimate.

Lemma 5.10 Let (6, A) be two subsets of Zd such that > R. Set
EouA = Eo 0 EA . Then, for any z E 7L~ such that A)  R, we have

 b (5.4.72)

with b  if IMI  oo and b == 1 in the case IM) = 2 or if M is a smooth
connected Riemannian manifold.

Proof : Let f be a measurable function of and F = . Let us first
consider the discrete setting. We then have

= = I (5.4.73)

and so, as v; is the uniform measure on M,

 (EoF) ~ i2 ’ ~ (5.4.74)

Moreover, Minkowski’s and Cauchy-Schwarz’ inequalities imply
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= ~,0P,((EeF)T-(EoF)~(5.4.75)
~ ~,0?,(Eo(FT-F~~. °

Since Q) > R, Ee is independent of the coordinate and we have

~,0~ ( Ee (F?-F?)~ 
Putting (5.4.73)-(5.4.75) together, we obtain the desired estimate.
In the case where )M) = 2, we can improve this bound in the following way ;
we observe that

= = ~)(Ee~.=+i)? - 1 (5.4.76)

 ~ (Eo(F~ -F~_,)~ = 
with = In the continuous case, the same estimate is true
since

|~i(E 0398~039Bf)1 2| = 
1 2 |E0398~iF (E0398F)1 2 = |E0398F1 2~iF12| (E0398F)1 2 

~ (E 0398|~ iF1 2|2)1 2

thanks to Cauchy-Schwarz’ inequality.
o

By mX,Y we shall denote the best constant in the spectral gap inequality
satisfied by the measure . Let (E~,X CC be the Gibbs mea-

sures constructed with the potential CC ~}, that is the Gibbs
measures where the interaction with the spin at z has been removed. We shall
denote by

03BEi,039B ~ dE0i039B|03A3039B dE039B|03A3039B.

Finally, for any X C A and x G we introduce a constant ~(039B)iX, given in the
discrete setting by

~ = VarAnx (EA, x (g;,A)) (5.4.77)
and in the continuous setting, if the potential UA is 03BDZd-almost surely differen-
tiable, by

~ = VarAnx (5.4.78)

By definition, ~~ will be zero for any other couple (x,X).
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Lemma 5.11 Let  ~~ Zd and F be a measurable function. Let I e c.

. In the continuous setting, assuming that F is almost surely differentiable, we
have

+ £ (5 .4.79)
jEAFnA

with 

()ij = ( 2 m,j)
1 2~

()ij. (5.4.80)

. In the discrete setting, the following estimate is satisfied

(vi|~i(EF)
1 2|2 )1 2 ~ e 1 2~ ()i,F~

(Evi|~iF
1 2|2 )1 2

+2(|M|m,F )1 2e~03A6~~()i,F~ 03A3 (EiE03BDj|~jF1 2|2)1 2.
Proof: Here we shall only focus on the discrete setting, the proof in the con-
tinuous one being slightly easier and following almost the same lines.
Writing

~ (~l~~) ~ ~ (~l~/~~) ~ ) (~.~.8~)

and applying the same arguments as in (5.4.75) , we obtain

("i ~ ()"i © "I ((~l~~’) ~ ~ (~l~~’) ~ ) ~) ~ (~.~.8~)

+ ()v; © F; ((EAF) " - 2)1 2
+ ()v; © ’; ((EAF) " - ") 2)1 2.

We can estimate the first term in the right hand side of (5.4.83) by using
Minkowski’ s inequality so that

© "I ((~l~ ~ (~l~ ~ © "I ~l~ (~’ ~ ~ ~ ~ ) ~) ~
= )V;F% )~) . (5.4.84)
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Moreover, by definition we notice that for any non negative function G,
we have

= 

= EAG + EA (EABA.~,A - 1) G (5.4.85)
 (1 + Var~G(EBG(03BEi,))) EG = (1 + 

Using this remark with G = we deduce from (5.4.84) and (5.4.85)
that

(~ ((E~ - (E~)~  [l+~~ 
(5.4.86)

which provides the desired estimate of the first term in the right hand side of
(5.4.83). The other terms only depend on the difference (EA~ - (E~F)~ that
we are going to study. To this end, let us note that

,(E~ - (E.F)~ = (5.4.87)~ ~ 

(E/F)2 
’

The above numerator can be bounded above by noticing that

( = (5.4.88)

 >

with EA a copy ofEA. Moreover, further computations give

(5.4.89)

 
~ 

Inequalities (5.4.87) - (5.4.89) give the following control

)(E~ -  (20142014) ’ ~&#x26; (5.4.90)~ 

/ 
’ 

Thanks to (5.4.90), we obtain the following bound for the second term in the
right hand side of (5.4.83)

(-~0~ ((EAF)~ - (E~)T  -~-~ ~ 
- 

> F
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_ ( 1 2) t (5.4.91)
A,AF

~ 
~ 
’l/§F £ E~ vj I ~j F’ ~ 2 .

mA,AF j EAnAF

Similarly, we estimate the third term in the right hand side of (5.4.83) and, with
(5.4.83), (5.4.86) and (5.4.91), conclude that

(03BDi|~i(EF)1 2|2)1 2 ~ B1 + ~()i,F]1 2(Evi|~iF1 2|2)1 2 (5.4.92)

+2(|M| m,F)1 2e~03A6~~()i,F(EiE03BDj|~jF1 2|2)1 2

that is the desired result in the discrete setting.
o

For further use, we present here the following lemma

Lemma 5.12 For any A C Zd

mo (5.4.93)

with mo the spectral gap for the product measure 

The proof is a direct consequence of property 2.6. In fact, in finite range inter-
action models, this result can be improved as seen in property 2.7. The main
interest of lemma 5.12 is that the estimate of mA,y there is independent of A.

We can now establish sweeping out relations.

Theorem 5.13 (Sweeping out relations )
For any finite subset A of which can be represented as the union of a fi-
nite numbers of cubes obtained by translation of the same cube Yo, there exist
constants ~ E (0, oo), so that for any i E A~, dist(i, A)  R, we have

+ ~ 
jEAu{i}

(5.4.94)
If we additionally assume that the strong mixing condition (SMC)is satisfied,
then

a~~ ~  (5.4.95)

for constants D, ê E (0, oo) independent of i E A~, d(i, A)  R and j E A U {i},
but eventually depending on the size of Yo.
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We notice that the dependence of D and e on the size of % is not essential since
the sets A can be as large as one wishes, for a given size of % . .
Proof : The idea of the proof is to apply inductively lemma5.11 and the uniform
bound of lemma 5 . 12 .

Let us assume that A is defined as the union of a family of disjoint cubes
(Yk " Yo + LoYk ) Yk G Zd With k = I, ... , N, for an integer number N, and a
cube % with diameter Lo. Let us remark that for any cube (Yk , k e ( 1 , ... , N) ) ,
lemma 5. l l implies

)~) ~ * (~) ~ (5 .4.96)

i~(A) ( ~ ~ ) (E03BDi|~i(EBYk f) 2 ( )
£ 

"

jEYk

with C z Using lemma 5. 12, we know that

C  A T 2( (M ) /mo) l 

In order to bound the first term on the right hand side of (5.4.96) , we apply
ind ucti vely this relation. It will soon appear that the optimal sequence of cubes
(Yk , k e (I, ... , N)) one can choose is to order them in decreasing order of
their distance to I. We hence let (k), I  j  N) be a lexicographical order
on (I, ... , N) such that j - d(I, is decreasing and let A( = Yk; .
To simplify the notations, we set ~(li)i,Ykil = q;,i and Yk; i = E§,i , I, I e (I , ... , N) .
Using repeatedly (5.4.96) , we obtain

(v; ( i7; (E x f) % (|2)1 2  e I illi °’>’ (EX v; (5.4.97)
N i

+ £ A . q; ’ i £ 
i=i jeY;,i

To bound the second term in the above inequality,
. we apply, for j e E§,i so that d(j, A$) > R, lemma 5. 10 (with e = A$ and

A = $) .
. We notice that for the j e i§,i so that d(j, A()  R, we can write a bound

for A( similar to that obtained in (5.4.97) ,

~ § i £N-’ q(2) ( 
~ §2 

 e1 2 l2=1 ~()j,i2 (EXvi|~jf1 2|2)
2 

(5 .4 . 98 )
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+A.~(2)j,l2 E 

where this time (~, 1  ~2  ~ - ~) is a lexicographical order on (~,~ C

{l,..., N}) so that l2 ~ d(j, Ykjl2) is decreasing, = ~N-ll2=1 Ykjl2 and we set

y- -y . ’ ~(lj2’2)j,Yj,l2 = ~(2)j,l2 .

Applying these two arguments inductively, we finally arrive at

~!V.(Ex/)~)’ ~ (Ex~!V./~~ +~~ (E.E~~,!V,/~~~ 
j~A

(5.4.99)
with

~)e~~~ (5.4.100)

and

~ E E ~~,~,---~~-~.~~~’~-~
inNy~,...~

where ~()X,Y stands for maxi~X ~()i,Y and where the sum holds over all the random
walks (Yi1, Yi2,...,Yin) on the cubes in A such that d(z, Yi1) = max1~k~N d(i, YA:)
and

max (5.4.102)

and j 6 Yin. Further, k = A B 
Now, assuming that condition (SMC) is satisned, we see that by definition

of the coefficients ~()i,X there exist two constants 6 (0, ~) such that for any
A G Zd, any X ~ Zd and i ~ 

~()i,X ~ Ce-~(i,X)

and hence

~~Ce-~~). "
In particular, ifd(~,~i) ~ Do = (2/c) (!~!!(1+ 2Lo) 

~~ v. ~ Ce-~/~~’~-~. (5.4.103)

We then conclude that

~ ~ (5.4.104)

for constants C0, Ci ~ (0, ~) depending only on Lo . The proof is complete.
o
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5.4.4 Comments on the strong mixing assumptions
To complete this section, we comment here on the mixing conditions we assumed
to prove the logarithmic Sobolev inequality. We shall see that they are optimal
with respect to our strategy in the sense that when II satisfies condition (Ciii),
some strong mixing property will be satisfied. We shall also show how to check
that (SDC) (and hence (SMC)) is satisfied in high temperature models.

Optimality of strong mixing assumption
Let us consider the symmetric transfer matrix

T=irn

with Ft as in section 5.4.2. Its adjoint II* is given by a similar formula but with
the conditional expectations coming in reverse order. It is clear that by using
the same argument as in the last paragraph 5.4.3, and assuming (SMC), one
finds the following analogous of property (5.4.46) for T

!V(T/)~~)V/~ (5.4.105)
with a constant A e (0,1). We shall see that this bound implies itself the strong
mixing assumption. For further use, we recall we have the following estimate of
the variance of for N e W,

= 

 2!!(T~)~~.~~V,(T~/)~~. (5.4.106)

If f is localized in A(/), then by construction ofT, the function is localized
in the set AN == (I : c!(~A(/))  4d(L + satisfying [AN  CW~ with a
constant C  (4d(L + R) + if D( f) is the diameter of A(/). We obtain
in particular that

03A3 ~~i(TNf)1 2~~ ~ CNd (~ |~ (TNf)1 2 |2 ~~)1 2. (5.4.107)

Thus, applying (5.4.105) with (5.4.106)-(5.4.107), we arrive at the following
bound

 2!!~~ (!! !~)’. (5.4.108)

Since T is self-adjoint with non negative eigenvalues, its spectral radius (see e.g.
[12], p. 15) is given by
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sup lim (~(T N f ; T N f )~ ~  a z (5.4.109)-

and so

(5.4.110)
Let us now assume that we are given two functions f and g localized in two
disjoint sets A( f ) and A(g). Setting N = ~d(A( f ), A(g))/C~, and assuming N
even (up to replacing it by N + 1) we see that

A(T ~ f) n A(T ~ g) _ ~
so that T ? ( f g) = . In particular, as  is invariant for T,

~~(f~9)~ _ ~~(T~ f~T~9)~  ~(T ~ f~T~f) 3 (~(T~;T~))’ (5.4.111)

~A~(~(/;/))~(~;~))~
Since (~(/; ; f ))’  for a finite constant C, we conclude that we also have

~ I (5.4.112)
with 

M ~ -1 2 log 03BB
Similar arguments can be developed in any finite volume (by modifying T ac-
cordingly) so that the strong mixing condition is indeed equivalent with condi-
tion (5.4.105).

Proof of (SMC)in the high temperature models

Here, we consider local Gibbs measures (E~, A CC E H) defined by a finite
range potential 03A6. We shall assume that ~03A6~ is sufficiently small (corresponding
to the high temperature situations) and shall show that the strong decay of
correlation property (or equivalently the strong mixing property) is satisfied.

We follow here the papers [63] and ~34~ .
On A C C ~, let us consider a lexicographical order ( js , x = 1,... and

set

Vi = 03A6X

where the sum is taken over all the finite subsets X with non empty intersection
with A, containing j; but not (,jk,1~  t). With such a definition,

I~I

~n~x) _ ~ vn(x)~
t=i
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Up to replacing UA by UA - j Ud03BD, we may always assume that the energy UA
is centered with respect to the product measure ~. Then, Jensen’s inequality
implies that the partition function Z~ is bounded below by 1.

Let f and g be two bounded measurable functions localized respectively in
A( f) and A(~). We are going to prove that, if ~j~) is sufficiently small, there
exists a constant c > 0 so that

~(/;F) ~ . (5.4.113)
To this end, let us first notice that

E03C9(f;g) = 1 2(Z03C9)2(f - 7)(F -)e-U-d03BD(x)d03BD(). (5.4.114)

Putting zi = l, we can write

M

’=1 i ~~i

where the sum i goes over all the subsets of {!,... JA)}. Observe that the
(~A~ ~ {1)" - ~ ~}) are localized into sets of radius bounded by the range of
the interaction R. Hence, introducing this decomposition into the right hand
side of (5.4.114), we see that only the F such that the k ~ i) make a path of
points in A at distance less or equal to R joining A( f) and A(g) will contribute.
Denote by the set of these paths. We then have, since Z~ > 1,

E (5.4.115)
A~i

According to (5.4.66), we have !/-/! ~ Moreover, the following uniform
bound

!~~=2~~~
holds. Further, we observe that, in any dimension d, we can find a finite constant
Cd,R depending on the number of neighbours of a point in and of the range
R so that

)~)~)f~~-~). °
Hence, we conclude according to (5.4.115) that

!~(/;~)t ~ ~c~’~)~~(~.~))~/)~ 1
which gives the announced statement  1, that is if is sufficiently
small.



Chapter 6

Logarithmic Sobolev
inequalities and cellular
automata

In this part, we introduce and study cellular automata. This approach to obtain
log-Sobolev inequalities for measures possibly non related to a given potential
was introduced by one of the authors (as an extension of the result for finite
convolutions contained in [109]). It was later studied by G. Gielis ([46]) who
used an idea based on disagreement of percolation to cover an extended high
temperature domain. Here we shall use cellular automata to establish loga-
rithmic Sobolev inequality for dynamical systems with possibly infinite range
of interaction. The transition probability of a parallel cellular automaton is
described by a product probability ; if C is a countable set, we consider the
transition probability on n = Mc given by

= ~i~Cp03C9i(di) (6.0.1)

where (pi, i E C) are probability measures on M which are absolutely continuous
with respect to the uniform measure

-’ 

As before, we shall concentrate on the case where M is a finite set, the contin-
uous setting being easier to analyze. The operator P given by (6.0.1) can be
considered as the transition matrix of a Markov chain.

Let E N) be the family of transition probability measures defined
by induction as follows f = f(~) , We shall show
that, under some conditions specified later, the following logarithmic Sobolev
inequality is satified with a constant c E (0, oo) independent of n E Nand
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(f log f)  (6.0.2)
We shall see that under proper assumptions converges as n goes to infin-

ity towards a probability measure ~ on Q, the limit being independent of the
configuration w G H. This limit law p will also satisfy a logarithmic Sobolev
inequality. The limiting probability measure has a priori no link with the Gibbs
measures introduced in the previous chapter. Also, we point out that the tran-
sition matrix P is in general not symmetric in L~(~).

We begin with the following central proposition

Proposition 6.1 Suppose that

A ~ sup sup 03A0 sup II oo (6.0.3)
~ P~ oo

and

sup max  oo (6.0.4)

with the notation

~ = sup 1 . (6.0.5)
~

Then, there exists a constant A 6 (0, oo) such that for any non negative function
f, we have 

) V (P f) " ( ~  AP ( V f " ( ~ .. (6 .0 . 6)

Remark 6.2 : The constant A can be chosen for example as follows

r 1 ~

03BB ~ b2A4c0 sup max 03A303BEji] 
2 

(6.0.7)

with b  if 3 and b = 1 if M has cardinality 2 or is a Riemannian

manifold. The constant Co can be chosen equal to supj,03C9~03C103C9j~~.~(03C103C9j)-1~~ .

Proof of Proposition 6.1. For any x 6 C and any non negative function /,
we can show as in (5.4.72) that

 = ((~/)~(~/)~) (6.0.8)

The right hand side of this last inequality can be rewritten as

. ((.~(~) = ~~.)~.) (~~~)~ (.....)
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with the notation  z wj;jc o i5; . Using a lexicographic order (ji e C)IEN , we
obtain

" 03A3Pl(r03C9jlf- P) f) (6.o. io)
ieN

where Pi E ,z E ©s i p§, ©s >i . With the notation (6.0.5) , we have

( pW f - pW f) - )p% . f) )  2) ( ~03BEijl ~ ~ (p# ( f) ) " (p% ( f § ; f § ))1 2
 2 1 Cl (P) (f) ) " (P) I ?j, f ’ 1 ~ ) ~ (6 . 0 . I I )

with a constant c0 ~ supj,03C9 (( p* ((m . (( (03C103C9j)-1~~. We now deduce from (6 .0. 10)
and (6.0. l l) that

l’f(15 ) 1  £ 2 " c1 20 ~03BEijl~~ (Pi © Pl (f) ) " (l’i © P§ I ?j, f " |2)1 2.
ieN

(6.0. 12)
Now, if

A z sjp sup fl sup II ,

~ W,W6$ikECWj;jc*Wj;jc Pk ~

let us observe that for any I e N , and all w , i5 e Q, we have

A~ ~ . PF(w)  Pi © p§ F(w , 15)  A . . P F(w) (6.0. 13)

so that we can estimate the right hand side of (6.0.9) by

( ~’ ( ~~~’ ~ - ) ~  (£ 
2 

(w ) (6 .0 . 14)
(p f) z (w ) + (p f) x (E ) 

~ [ 2A2 c0 03BEij 03BEij P|~jf 1 2|2 (03C9)

where - we recall - that w and i5 only differ at the site I. Inserting this result in

(6.0.9) and using (6.0.8) , we obtain

| ~i (Pf) 1 2|2 ~ b2[ A2 c0 03BEij] 03BEij vi (d03C9i )P|~j f 1 2|2

 b2 [A4c0 £ £; j (6 . 0 . 1 5)
jec jec
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which gives, after summation over the i E C,

/ r 2
|~(Pf)1 2|2 ~ [ b2A4c0 sup max , f1 2| 2 ( 6.0.16 )B ~ 

jEC jEC / .

which finishes the proof of the proposition. o

Proposition 6.1 will be the key ingredient in the proof of the following theorem.

Theorem 6.3 Assume A of (6.0.6) is strictly smaller than one. Then there
exists c E (0, oo) so that

(f log f) - f log f  |~f1 2| 2 (6.0.17)
for any n E ~V and 1J E S~, and every non negative differentiable function f .
Consequently, the probability measure tc = limn~~ Pn,03C9 satisfies the logarithmic
Sobolev inequality with the same constant.

Proof. For a non negative differentiable function f, , we set fn = P fn-1 with
the convention f o = f.

(6.0.18)

By proposition 6.1, we find that

 2c~~n-1 ~‘~ (D f ~ ~2. (6.0.19)

Thus, we deduce, as in section 5.2 (see (5.2.5) and (5.2.6)), (6.0.17) from (6.0.19)
with c = co/(l- A) when A  1. To prove the second part of the theorem, let us
remark that using (6.0.10), for any (c~, w) E n2 so that = we have

|P03C9f-P03C9f| = |03A3Pl pv ((03C103C9j 03C1j-q)~jlf))| (6.0.20)

and therefore 
-

~~‘~f - ( ~ ~ (6.0.21)
jec

Now, for any n, m E W, n > m, we see that

sup Ipm I(w) - f (~)~. (6.0.22)

It is not hard to see that

I ~ ~ (6.0.23)
~Ee
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Since (6.0.21) implies that for any i, we deduce
that 

 |||f||| 1 (6.0.24)

which, under our hypotheses, converges towards zero as m -~ oo. Hence, we
have shown that is a Cauchy sequence, uniformly with respect to
the boundary conditions w E O. This is sufficient to guarantee, as we saw in
part 5.4, that converges towards a unique probability measure ~z.

o

In the last part of this chapter, we discuss the case where the cellular automa-
ton is described by a potential. In other words, if for a potential ~ of possibly
infinite range of interaction and a subset C of we set Uj = ,

then we define the transition matrix by (6.0.1) with pj = .

To study the ergodic properties of ’P~, we shall try to find natural conditions
under which the assumptions of the latter proposition are satisfied. With the
same notation as above, let us first note that for any = we have

~03C103C9k 03C1k~~ _  ex p 2 03A3VarX(03A6X)) (6.0.25) )

In this case, we see that

A  exp 2 sup E ~X (  (6.0.26)

and that

~~ j  2 1~ exp 2 ~ . (6.0.27)

Here, we used the notation

(6.0.28)

We shall assume in the sequel that ~ _ belongs to the Banach
space B2 of potential with finite ) ) . norm. Then, .

sup max (6.0.29)
’ 

jEC jEC 

Using the previous proposition, we can hence write down the following result.
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Theorem 6.4 Assume that the cellular automaton ~~ is described by a poten-
tial 03A6 E 82.  po E (0, oo), for a sufficiently small ,Qo E (0, oo), then
there exists a unique invariant measure  for the semi-group P ~ P03A6 satisfying
for some constant e > 0 and for any differentiable function f,

~Pnf - f~~  s.0.30

Moreover, there exists a finite constant c E (0, oo) such that

pflogf/p,f _ (6.0.31)

for any non negative f unction for which the above right hand side is finite-

Remark 6.5: The reader interested in ergodicity questions about cellular au-
tomata may like to consult for example ~?2~, [46] and [47] and the references
therein. It is interesting to note that the question whether the limiting proba-
bility measure of a cellular automaton is a Gibbs measure or not has not been
addressed in the general setting of a potential ~ E B2.



Chapter 7

Logarithmic Sobolev
inequalities for spin systems
with long range interaction,
Martingale expansion.

We now come back to a spin system described by a potential &#x26; = 
as introduced in chapter 5. However, we remove the assumption of finite range
of the interaction to extend the previous results e B2, that is, satisfying

~03A6~B2 ~ sup 03A3|X|.~03A6X~~  ~.

We shall prove that when the uniqueness condition ofDobrushin is fulfilled, the
unique Gibbs measure in infinite volume satisfies a logarithmic Sobolev inequal-
ity. To this end, we shall first recall a few facts from the uniqueness theory
of Dobrushin ([27], [41], [94], [45]). Then, to prove the logarithmic Sobolev
inequality, we follow an approach based on martingale expansion introduced in

[69]. To simplify the notations, we restrict ourselves to the case M = {20141, +1}. .

7.0.5 Long range interaction systems
Given a family of probability kernels (Ek = on a probability space (2
equipped with a a-algebra E, the interaction matrix ~ Z~ ofDobrushin
is defined by

sup sup[E03C9k(A)-E03C9k(A)| (7.0.1)
"

where the supremum is taken over all £-measurable sets A.

Hereafter, we shall assume that the following condition is satisfied
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Dobrushin’s uniqueness condition

sup ~ Cki  1 (7.0.2)k 
IEZd

Let us recall the very nice result due to H. Föllmer [41]

Theorem 7.1 Assume Dobrushin’s uniqueness condition holds. Then for any
A C Zd and w E Q, we have 

9) ~  ~ vark ( f )Dk1 vart (9) (7.0.3)
k,IEA

with

00

Dki = (7.0.4)
n=o

Remark 7.2 : One can see as in section 5.4.4 that Dobrushin uniqueness condition
is satisfied when for a sufficiently small positive real number ,Qo

 ~o

but that this condition is not necessary (see ~94~, [45] for examples of possibly
large potentials and for some other types of potentials see ~79~, ~38~).
Theorem 7.I shows that the local Gibbs measures satisfy a property of decay of
correlations, the crucial step to obtain a logarithmic Sobolev inequality in the
previous parts. In order to use it to prove a logarithmic Sobolev inequality, we
shall first prove an auxiliary lemma which will be essential to get sweeping out
relations. To this end, let us denote as in section 5.4.3,

= - - (7.0.5)

with and 03C9(i)j = -03C9i thenWIt 
1 Z ,I an I ~ ~ i> en

Lemma 7.3 If Dobrushin’s uniqueness condition holds, for any A cc Zd and
all i E j E A, the quantity

= sup (7.0.6)
ACCZd 

’

satisfies

sup max ~ , ~  oo. (7.0.7)
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Proof : To estimate the quantities let us remark that

(7.0.8)

Using theorem 7.1, we obtain

E (7.0.9)

Consequently, to bound (7.0.9) as well as the second term in the right hand
side of (7.0.8), we have to bound To this end, let us go back to the
explicit definition (7.0.5), to obtain

C~ (7.0.10)

where we have set

C~=26~ ~ Varx(~x).
X5t./c

To use this bound, we note first that C,~ is summable in 2 or k. In fact, changing
the order of summation according to Fubini’s theorem for non negative variables
and since we get

~"~ 
kEZd ~9 i

(7.0.11)
with the right hand side finite with our hypothesis. We can thus bound (7.0.9)
as follows

|E03C9039BBj(03BEi,039B;03BEj,039BBj| ~  CikDklCjl. (7.0.12)

Since under the Dobrushin uniqueness condition, the family Dj~ is summable

with respect to according to theorem 7.1, we deduce from (7.0.10) and
(7.0.11) that the right hand side of (7.0.12) is also summable over z and j.
Combining this remark with the bounds (7.0.8) and (7.0.9) completes the proof.
o

Lemma 7.3 is the key to the following theorem.

Theorem 7.4 Assume that the Dobrushin uniqueness condition is satisfied for
a system with potential 03A6 ~ B2. Then, there exists a constant c ~ (O.oo) such
that for any A C Zd and 03C9 ~ 03A9, we have

E03C9flog (f E03C9f) ~ c E03C9|~f1 2|2 (7.0.13)

for any non negative function f such that the right hand side is well defined.
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E. Laroche [64] proved a similar result for exponentially fast decreasing inter-
actions. (Also, note that the method used in [75] proves similar results for
exponentially decaying interactions.) Here we present a proof based on lemma
7.3 and a martingale expansion of relative entropy (introduced in [69] ) .
Proof : Let us consider a lexicographical order {ik’ k =1, .., N = of A and
set Ai = ~i1}, = An U Let En = EAn, and, for a non negative
measurable function f, set f n = En f, fo = f. . We then deduce from lemma 7.5
applied with cubes reduced to single point sets that

ENf log
f ENf 

~ c0 EN |~in f1 2n-1 |2 (7.0.14)

with co the smallest constant in the log-Sobolev inequalities satisfied by all
the local Gibbs measures restricted to a single spin (1’ algebra related to points

 k  N}, uniformly with respect to boundary conditions. Applying
lemma 7.3 and proceeding as in section 5.4.3, it is not difficult to see that there
exist non negative coefficients «s~ ~ so that for any n E ~1, .., N},

I  £ «~"n} Ep ~ f ~ ~2 ’ (7.0.15)

with

sup (A) 1 (7.0.16)

satisfying

7 ’Yij, E  oo. (7.0.17)
’ 

jEZd jeZd /
It is then easy to deduce from (7.0.14) that

EN f logf ENf ~ c0.03B32EN|~Nf1 2|2. (7.0.18)

Indeed, inequality (7.0.15) gives

|~i(Enf)1 2|2  ( 03B1(n)ij 03B1(n)ijE|~jf1 2|2 (7.0.19)
 ’Y . Lr 

jEAn

so that
N N

~~’ E (7.0.20)
n=1 

~ 

n=1 

~ 7’ E EN|~jf1 2|2 = .

jEAN



93

(7.0.15) thus implies the desired estimate. o

7.0.6 Martingale expansions
In this section we present a different useful way of organizing the proofs using a
martingale expansion of relative entropy(introduced first in [69]; see also [75]).
We consider spin variables with values in a finite set or a smooth connected
Riemaniann manifold M. Let Lo E 2 IN and Yk = Yo + Lo . yk be the translation
of the cube Yo = ~-Lo/2, centered at the origin by the vector Loyk,
yk E r. . The vectors , k E ~ are ordered according to a lexicographic
order compatible with the distance d(. , .) on We define a sequence of finite
subsets of by Ai = Yi and = We denote in short En = 
For a continuously differentiable function f, we set f o = f and En+1fn =
En+I f . We then have the following

Lemma 7.5 There exists a constant co E (0, oo) depending only on the size of
Yo such that for any N E W and any continuously differentiable non negative
function f, , we have

ENf logf ENf ~ c0EN|~Ynf1 2n-1|2. (7.0.21)

Proof : Let us first notice that

E n (fn-1 log fn-1 Enfn-1) = E n,Yn fn-1 lo g E (7.0 .22)
~ n f n-1 B n,Yn f n-1

with En,Yn the restriction of En to the 03C3-algebra 03A3Yn. According to lemma 7.6
below, at any point w E Q, the measure satisfies a logarithmic Sobolev
inequality with a constant co E (0, oo) independent and 

Consequently, we get

En (fn-1 log fn-1 Enfn-1) ~ c0 En|~Ynf1 2n-1|2 (7.0.23)

Using this inequality with (7.0.22), we obtain lemma 7.5. It thus remains to

prove the

Lemma 7.6 Let cy x be the constant in the logarithmic Sobolev inequality for
the restriction of Ex to the ~-algebra . Then, for any
continuously differentiable non negative function f localized in a set Y eX, we
have

EX f logf EXf  2 (7.0.24)

with
0  cY,X  0.e4~03A6~.|Y| (7.0.25)

if Co is the constant in the logarithmic Sobolev inequality for the probability
measure v.
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This lemma is a direct consequence of property 4.6. Indeed, the probability
measure E~ is absolutely continuous with respect to the probability measure

= E03C9X(eUY.)/E03C9X(eUY) = if vY is the product probability
measure on (:c,~ ~ V). The corresponding density = -~- satisfies

> 

6-~~"-~~(~)~~~~ (7.0.26)
so that property 4.6 provides the desired estimate.



Chapter 8

Markov semi-group in
infinite volume, ergodic
properties

In this chapter, we study Markov semi-groups acting on functions of infinitely
many variables of We first construct them as limits of semi-groups de-
scribed in section 5.1 with localized potentials. This construction is important
to insure that such semi-groups are Feller continuous, but also to be able to
approximate them by Markov semi-groups in finite volume (see the exponen-
tial approximation property of Theorem 8.2) which are easier to study. Such a
construction can be found in the literature in [64] (for the continuous setting)
and [67], [100] (for the discrete setting); see also the references given there. We
then study the uniform ergodicity of these infinite volume semi-groups when
the corresponding Gibbs measure satisfies a logarithmic Sobolev inequality. We
show that they converge uniformly towards this Gibbs measure with an expo-
nential rate. This result is actually part of the so-called equivalence theorem,
which states equivalence with such a uniform convergence (for semi-groups with
a Gibbs measure satisfying a logarithmic Sobolev property), but also with other
properties of the Gibbs measure such as a spectral gap inequality. We discuss
this theorem in the last section of this chapter.

8.1 Construction of Markov semi-groups in in-
finite volume

In this section, we present a construction of Markov semi-groups in infinite
volume when M is a finite set (the continuous setting being left as an exercise
to the reader).

Let H = M" be the configuration set be a local
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specification constructed with the product measure po = v®~ and a interaction
potential ~ with finite range. We shall use the notations of the chapter 5 (see
section 5.1).

We can easily define, for X CC ~, finite volume semi-groups by their
generators

,Cn = ~ ,Cx+j
j:X+jCA

with
= Ex+j f - f .

We denote by the corresponding semi-group.

Exercise 8.1 Show that for any subset A the operator  formally given above
is well defined on the space of functions f for which the following semi-norm is
finite

|||f||| ~ 03A3 ~~jf~u

were = f - vj f .

The goal of this section is to prove the following result

Theorem 8.2 For any local function f the following limit in the uniform norm
exists

Pt f := lim f
~Zd

and defines a Feller-continuous Markov semi-group on C(Q) .
Moreover, we have the following exponential approximation property : for

any A E R+, there exists a constant B E depending only on A such that
if A is sufficiently large, contains A( f ) and dist(A(/),AC) > Bt, then

~Ptf - P(039B)tf~~ ~ e-At|~f~|. (8.1.1)

Proof :
We will show that for any couple (A1, AZ) E Ai C A2 so that 2B1

is a cube of a given size, the semi-groups P1 := and P2 := P~"~l satisfy

~P1tf - P2tf~~  I (8.1.2)

if

dist(A( f ), A2BA1) > Bt

for a finite constant B depending only on A for

N ~ ~ 
R + diam(X)
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with the square bracket denoting the integer part.
To prove this estimate, note that

P~/-~/ = (8.1.3)

where we have set in short jC, := jCA, for i == 1,2.
03B9From (8.1.3), we immediately deduce that

~ C0t0 ds 03A3 ~~jP2sf~~ (8.1.4)
~ 

with a finite constant Co depending only on the size ofA2BAi and the interaction
~.

We are hence naturally interested in the quantities for a finite volume

semi-group P. We present below a simple study of these quantities.
Let us first remark that

~jtf - t~jf = t0ds d ds t-s~j sf

= / (8.1.5)

with = We also point out that, due to the local structure
of the generator, we have

[~]= E (8.1.6)

Moreover, one can easily see that for any smooth function jF, we have

~[~j,LX+k]F~~ ~ 03B1jl~~lF~~ (8.1.7)

for uniformly bounded constants We deduce from (8.1.5), (8.1.6) and (8.1.7)
that

~~jtf~~  (8.1.8)

with a matrix D with uniformly bounded coefficients such that

Dj = 0 if d(j’,~)>R+ diam(X).
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Since V,/ = 0 if j does not belong to A(/), we can use (8.1.8) inductively toconclude that

~~j tf~ ~ ~ 

tnn! D
(n)jl~~ lf~ ~ ( 8.1.9)

where

~. = ~ R + diam(X)
and is the entry of the matrix D" the n-th power of the matrix D We
can estimate these coefficients by noting that if C is a finite constant satisfying

Djl ~ C [2(R + diam(X)) + 1]d

for any (~/), we have

D(n)jl ~ cn
As a consequence,

E (8.1.10)° 
~ *

Observing that for any n e W,

n! > en log n-2n

and choosing j3 e (0, oo) such that

we conclude that for

N = inf N
j = [dist (2B1,(f)) R + diam(X) ] ~ Bt

we have

. (8.1.11) )

Using (8.1.11) with P = P~ in (8.1.4), we deduce that for any sequence
i C of Markov semi-groups such that the Ai’s are a Van Hove se-

quence (i.e are constructed by addition of the translation of a given cube),
z E W} is Cauchy for any local function f. Hence, the limit

Pt f = lim 
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exists for any local function f . Furthermore, if A = AN, we have

~Ptf - P()tf~~ _ L: P(n)t f~~
n=N

00

 t o E E /I ~~jP(n)tf~~
00

 tC0e-At03A303A3 e-ANn |||f|||

 te-At (C0|0| 03A3Ld-1e-AL ) |||f||| (8.1.12)

with the notation

Nn _ dist(An,An_1, A( f ))n 
R + diam(X) 

’

This last estimate completes the proof of the exponential approximation. As
a consequence, since in finite volume is strongly continuous, the same is
true for P. Since the local functions are dense in C(S~), P extends naturally to
a Feller-continuous Markov semi-group with generator

,C = ~ ,Cx+~ .
j~Zd

Exercise 8.3 Generalize theorem 8.2 to the continuous case, i.e. to the case
where M is a smooth ~compact~ connected Riemannian manifold and ~C~ has
the form

LA = ~ (~i ~‘ 
i~Zd

where HA - 03A3X~ 03A6X . Hint : Fodlow the arguments of the proof of theorem
8.~; (note that here it is important to keep the terms Dettai with i ~ A in the
approximating generator).

Exercise 8.4 In the case where the potential 03A6 is not o f finite range, but sat-
isfies

~03A6~B2 = Sup 03A3 |X|.~03A6X~u  oo

show that the following exponential approximation property holds : for any A > 0
and any ~ > 0, there exists a finite constant C so that

~Ptf-P()tf~~ ~ e-At|||f|||

provided that
d(A, > 
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8.2 Uniform ergodicity of Markov semi-groups
in infinite volume

In this section, we summarize the main links between the log-Sobolev inequality
and the uniform ergodicity of Markov semi-groups in infinite volume, (see ~59~,
[60] and [98]-[101]).

Again, we are given a local specification defined by a uni-

form product measure ~4 = v~~ and a finite range interaction potential ~.
Then, the following relations are satisfied

Theorem 8.5 Assume that we can define a Gibbs measure ~ in infinite volume
and that it satisfies the logarithmic Sobolev inequality with a coefficient c.

In finite volume, assume that there exists a constant Cl E (0, oo) such that
for any non negative function f , any A cc 

 (8.2.13)
Moreover, assume that the finite volume exponential approximation is satisfied,
that is, for any local function f, , any A E 1R+

~Ptf-P()tf~~  e-At|||f||| (8,2.14)

provided that for sufficiently large A,

dist(A( f ), > Bt

for a finite constant B depending only on A.
Then, for any 9 E (0,1), there exist a finite constant C(B, A( f )) and a

positive real number m E ~l~c, oo~ such that for any t > 0,

~Ptf - f~~  G’(e, 

Remark 8.6: If X cc 7~d} satisfy a classical Nash inequality with con-
stants growing at most exponentially with the volume, (8.2.13) is satisfied ac-
cording to theorem 3.3.
Proof : Let us first note that the following decomposition holds

|Ptf - f| ~ |P()t f - f| + Ptf|. (8.2.15)
The second term will be estimated by the exponential approximation property.
For the first term on the right hand side of (8.2.15), we note that, by Holder’s
inequality, for any q > 1, ,

= I

 9

 E~ ~Pt’~1 f - ~ f ~q Q (8.2.1fi)
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where we used hypothesis (8.2.13). Moreover, by definition of for any time

t, ~ f is EAR measurable if f is when AR =  R}. Hence,
(using the assumption that the potential + is bounded and of finite range), we
can find a finite constant C2 so that

Noting as well that

~~p~_"if - + (8’2.17)

we deduce from (8.2.16) that

 ec1||+c2|~| q {( |Pt-1f - f|q) 9 ’+ ~P()t-1f - Pt-1flcxJ )
(8.2.18)

By the exponential approximation property, we conclude that if f is a local
function and A is chosen sufficiently large, so that A( f ) C A and its diameter is
of order t > 1,

~P()tf - f~~ ~ e c’1(t+1)td-1 q ( (Pt-1f

- f) q)
1 q + ec’1(t+1)td-1 q 

e-At|||f|||

for a finite constant Cl. If moreover ~ satisfies a logarithmic Sobolev inequality
with a coefficient c  oo, let us recall that theorem 4.1 implies that for any
8 E (0,1) such that  t-1 2 c) = 1+e~’~, ,

q ~ ( (P03B8tf - ~ e-m03B8t~f - f~2
where m is the spectral gap of ,C which is bounded below by c-1 (see theorem

4.9). With such a choice of q, the factor e q is uniformly bounded in t
and we obtain the desired estimate.

o

Exercise 8.7 Extend the theorem to the case where ~ E B2. .

8.3 Equivalence Theorem

We consider a local specification {E03C9}~~Zd,03C9~03A9 defined by a product measure
~c~ = v®~ and an interaction potential (11 = (~x)y.- ~d with finite range R.
When needed, we shall indicate more explicitly the potential defining the local
specification by the following notation 
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For A CC we shall call = the Markov semi-group generated
by

= (L,.~ ~a ) )
~~n

that is, the semi-group acting on the variables ~a~s, 2 E A} and with fixed bound-
ary conditions. There, we used the notation

= 

in the discrete case and

_ (Os _ o WA~)
in the continuous setting.

Now, we present the result from [98] relating mixing conditions and ergod-
icity.

Theorem 8.8 The following conditions are equivalent
(i) Strong mixing conditions
There exists M E (o, oo) such that for any A cc any v E 03A9, and any

local functions f and g localized in A,

~  .

(ii) Complete analyticity condition :

For any n E IN and any potentials k = 1, .., n} with finite range, the
map

. 

~~~ "’~ EAr~,~ n (f )

is analytic in a neighborhood  E} of the origin for some E independent
of A cc and of the local function f. .

(iii) Uniform spectral gap inequality :

There exists a constant m E (o, oo) such that for any A cc Zd, and all
c~ E ~2,

m E;~ f )2  
for any function f for which the right hand side of the above inequality is well
defined and finite.

(iv) Uniform logarithmic Sobolev inequality :
There exists a constant c E (o, oo) such that for any A CC and all

W E 03A9,

E03C9(f log f E03C9f) ~ cE03C9(|~f1 2|2)
for any non negative function f for which the right hand side of the above
inequality is well defined and finite.
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Remarks :

1) The equivalence between (i) and (ii) is due to Dobrushin and Shlosman
[22] who proved the equivalence between some 14 conditions encountered in
statistical mechanics. The proof of the equivalence with (iii) and (iv) was given
first in [98].

2) Similar assumptions remain equivalent if one replaces the sequence of
finite sets by a van Hove sequence. In this setting, the equivalence between (i)
and (ii) is due to E. Olivieri and P. Picco [77], the others to S. Lu and H.T. Yau
[69] as well as F. Martinelli and E. Olivieri [75]. These results allow to extend
the domain of validity of logarithmic Sobolev inequalities to a larger class of
potentials.

3) The implication (iv) gives (iii) was already seen and is a direct consequence
of the definition of logarithmic Sobolev inequality. The converse implication is
in general rather unusual. It is intimately related to the assumption that the
Spectral Gap inequalities are assumed to be obtained uniformly with respect to
the finite sets A and the boundary conditions.

4) The implication (i) gives (iv) can be proved as discussed in details in the
previous chapters.

5) The fact that (iii) implies (i) is due to the exponential approximation
property. Indeed, we have

En(f,9) - En(f9) - 
= 

Using the exponential approximation property, we get

i

as long as
d(A( f ), A(g)) N Bt

for some B = B(A) E (o, oo). As a consequence,

1

~ 

Using the uniform spectral gap inequality, we obtain (i).



Chapter 9

Disordered systems ;
uniform ergodicity in the
high temperature regime

The simplest example of disordered systems we consider is described by the
following formal Hamiltonian

H(u) = E 

with the spins o~= in ~-1, +1} for the Ising type models, and for continuous
models such as the rotator, the spins take on values in a smooth manifold such
as an N-dimensional sphere. (For example if N = 2, one has the representation

with §; E ~o, 2~r~ . )
In this chapter, the Jij will be taken at random. It is assumed that the Jij

are independent and identically distributed.
One can easily imagine that in such systems on the infinite lattice large

regions will have strong couplings. Thus the interaction in such regions will be
of low temperature type. However, if the inverse temperature /3 (used to scale
the Hamiltonian in the formal expresion for the Gibbs measure) is sufficiently
small, "most" spins in the system will effectively interact weakly. The system
is therefore mostly of the type studied previously, but exhibits with probability
one (with respect to the realization of the couplings) large regions of strong
interaction. As a consequence of this general picture, the Glauber dynamics
should still converge at high temperature towards the unique Gibbs measure but
its convergence will be slowed down due to these regions with strong couplings.

To illustrate these ideas, we shall first describe the proof given in [110] of
the absence of spectral gap at any temperature for models in which the J; j can
be as large as one wishes with positive probability.



105

Secondly, we shall bound almost surely the growth of constant in logarithmic
Sobolev inequality for local Gibbs measures in dimension 2 as a function of
the volume and deduce a stretched exponential decay of the dynamics towards
equilibrium (that is a decay with rate going to zero as the exponential of -te
for some 9 E (0,1)). .

9.1 Absence of spectral gap for disordered fer-
romagnetic Ising model

Here, we restrict ourselves to the Ising model

S~ _ -1, +1}~ .
We shall also assume d > 2. We consider the Hamiltonian given, for any A CC
, by 

_

H~(~) _ ~~(J~ ~) _ - ~ + ~ .

where the couplings (J) = (i, j) E are independent identically dis-
tributed real valued random variables on a probability space IP). . We
denote by IE the expectation under 2P. We shall assume that ~~ is finite.
We can associate to ~~ the local Gibbs measure on {-1, +1}A given by

A,J

with

- + ~~=+i ) .

In case when the couplings (J) can take with positive probability values as small
as one wishes, that is | ~ f) > 0 for any f > 0), and EJij = 0, for any
,Q > 0 one can define with F-probability one a unique Gibbs measure ~J in
infinite volume as a limit of the local Gibbs measures EX J (see [43], [29], [34]).
Indeed, with F-probability one, the couplings will be as small as needed
in a set ct = {i E ~, + + .. + lidl E ~L, L + l~} with t as large as
one wishes provided L is large enough (as a consequence of the Borel-Cantelli
lemma). Thus, the expectation under of functions localized in

the sphere SL = ~ i E Zd + li21 + .. + ~  L} will weakly depend on the
boundary conditions (with a correction going to zero exponentially with I

growing to infinity). Consequently, with 2P-probability one, one can construct
a Gibbs measure in infinite volume’ and it is unique. [This phenomenon is
even sharper when one deals with couplings (J) which can be null with positive
probability; as soon as one can draw a closed loop surrounding the origin of null

couplings, the expectation inside this loop is independent of the spins outside it
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and therefore does not depend on the choice of the local Gibbs measure EX as
soon as A contains this loop.]

Despite this decay of correlations and uniqueness of Gibbs measures, we
will show that the generators of the corresponding Glauber dynamics have no
spectral gap. To this end, let us consider the Glauber dynamics generated by

LJf = ~ (E{s} f - f ).

The construction of the associated infinite volume semi-group P~ can be done
in a similar way as in nonrandom case considered before, (see [53]). We shall
see that the following result is true.

Theorem 9.1 For any (3 > 0, if

J) > 0 et a) > 0 (9.1.1)

for a sufficiently large J > 0 and a constant a > 0 sufficiently small (depending
on ,Q), with F-probability one,

inf J(-LJ(f)f) J(f - Jf)2 
_ 0 (9.1.2)

i.e., the generator LJ has no spectral gap IP-almost surely.

Proof : Let us consider the configurations of the couplings (J) such that, if we
put AL = [-L, (J) is in the set

= k + AL Jij > J and di E L,j E ~L , |Jij| ~ a}

with k E Here,

k + AL = f (i~ ~) = k + (i~~.?~)~ (i~~ J~) E AL~.

We claim that, for any L E W, with F-probability one, (J) belongs to 
for some point k of the lattice. is strictly positive
according to our hypotheses for any L E W and k E ~. Consequently, the
Borel-Cantelli lemma implies that for any L E W,

IP 
kE PJ,ak+L) = 1.

We can assume without loss of generality that k is the origin and thus assume
that (J) E 

For such a configuration of the couplings, we shall compare the restriction of
the Gibbs measure J to EAL with the measure E0L,J with Dirichlet boundary
conditions (e.g. w = at the boundary of AL). 

In fact, for any function f localized in AL, we have
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J(03A3i(~if)2) J(f - Jf)2 ~ e603B103B2|~039B|E0039BL,J(03A3i(~if)2) E0039BL,J(f - 0039B,Jf)2. (9.1.3)

Moreover, in AL , if 03B2J is large enough, we can use the results of Thomas [104].
We then find a constant a > 0 such that

inf ~~) ~ ~ (9~.4)~ ~ ~ ° ° °

(9.1.3) and (9.1.4) imply that

~ (9 1 ~° ° °

Since L can be taken as large as desired, we conclude that when 6a  

inf = 0 (9.1.6)

o

Absence of spectral gap was also proved for the rotator model in [53] where
the spins take on values in a unit circle and the interaction is described by the
potential

03A6X = { Jijcos(03C6i - 03C6j) if X = {ij} (9.1.7)0 otherwise ’ ° ° 
’

with the taking again arbitrarily large and small values with positive prob-
ability. Thomas’s estimates need then to be replaced, in order to estimate the
spectral gap of the generator in the low temperature regions, by the use of
Ginibre’s inequalities [36]. .

9.2 Upper bound for the constant of logarith-
mic Sobolev inequality in finite volume and
uniform ergodicity, d=2

In this section, we prove an upper bound for the constant in the logarithmic
Sobolev inequality in finite volume in dimension 2 and show that it implies
uniform ergodicity for the dynamics of the corresponding infinite system. We
describe the strategy developed in [53]. It relies on the controls obtained in [99],
[100] and [101] and described in chapter 5. Under some additional but physically
quite general assumptions, sharper results were obtained later by Cesi, Maes
and Martinelli [14] giving optimal controls in any dimension. These results

show that if the tail of the random variables (J,j, (z,j) ~ decreases faster
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than exponentially, the log-Sobolev constant c(A) for the local Gibbs measure
localized in A decreases very slowly and more precisely, when A = [-L, L]~,

c(A)  

However, when the tail of the random variables (Jsj, (i, j) E is exponential,
c(A) decreases only polynomially with the volume. In this setting, the estimate
obtained in [53] is on the right scale.

We restrict ourselves here to the discrete setting, the generalization to the
continuous setting being straightforward and given in sufficient detail in [53]. We
shall denote by Q = M~ the configuration space with a finite set M. BJ, F)
will denote the probability space on which the external random coupling lives.
The Hamiltonian of the system is given by a potential 03A6 ~ (03A6X)X~Zd of real-
valued measurable functions on JJ x H such that 

- For any X C the function ~x (J, .) is continuous and Ex measurable.
- For any i ~ Zd, we have

XEF
X3i

- The family {~x (., w), X E of random variables is mutually indepen-
dent. Moreover, the random variables and ~X (~, w) are identically
distributed.

Furthermore, we shall assume that the interaction is of finite range, that is
there exists a finite positive real number R such that ~x = 0 when diam(X) >
R, jp-almost surely.

The Hamiltonian of the system in finite volume A is then given by

) _ E 

where UA o is the configuration described by 03C3 inside the cube A and by w
outside A.

Remark 9.2 : In the previous section, we considered the particular case (but
most commonly studied) where

~X (J ~ a’) - 

if X = ~ i, j } when I i - j I =1 and 0 otherwise.
We associate to .~ the local specification ~) as before. We

consider the dynamics generated by 
’

~f = ~1~’ s+X ~ - ,I ~
i

for a finite set X of The construction, for 1P almost all J, of the semi-group
PJ in infinite volume can be achieved as in chapter 8.1. We then obtain the
following exponential approximation property.
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Theorem 9.3 Assume that ~ _ is a finite range potential such that

sup sup  o0

X 

for a finite real number K > d. Then, the limit

Pt f = lim pJ,Af
039B~Zd

exists F-almost surely. Moreover, for any cube A, any A E IR+ and any local

function f, , we have

~PJt f - PJ,t f~~  I (9.2.8)
provided that d( f, A~) > L for a constant L - L(A( f ), R, J) almost surely finite
and d( f , A~)1-a > Ct for a finite constant C E 1R+ depending on J, A( f ), A and
for some ~ E (o,1). .

9.2.1 Bound on the log-Sobolev constant

The basic idea to control the log-Sobolev constant is to show that a decay of
correlation property is satisfied by the local Gibbs measures but that it

will depend on the size ~A~ of the finite volumes under consideration. More

precisely, we prove the following

Property 9.4 Let AL = [-L, L]d.
Assume that

(Hl ) For any ~ E llt, we have

.)~~1} (9.2.9)
with

~)~~1= ~ ~~~x(J~’)~~~. °
X~F
X~J

(H2) There exists Jo > 0 sufficiently small so that

pl = sup IP { ~03A6X~~ > J0} (9.2.10)
x

belongs to (o, pbc(2, R)) with pbc(2, R) a universal critical percolation exponent.
If and (H2) are satisfied, there exist a finite constant ro > 0 and a

constant M E (o, oo) such that for almost all J, L sufficiently large, for any
A C AL , and any w E 

 I -

for any functions ( f g) localized in AL such that

d(A( f ), A(g)) > ro log L.

Moreover, ro goes to zero when pl goes to zero.
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Using the result of exercise 5.7, one deduces from this property the following
almost-sure bound on the log-Sobolev constants.
Theorem 9.5 Let AL = [-L, L]d for L E ~V. 1 f (Hl) and (H2) are satisfied
there exists a finite constant co > 0 such that 1P almost surely, for L sufficiently
large (L > L(J) with L(J) being finite)

 
.

Moreover, co goes to zero when pl does.

To complete our proof, we shall prove property 9.4. The proof is in fact a
slight generalization of the computation presented in section 5.4.4. To simplify
the notation, we assume R = 1, the generalization being given in details in [53].
Let us notice, following [34], that

EA , J (f a 9) -  (9.2.11)

with W ( f , g) the set of paths in A connecting A( f ) and A(g) and

zi,j = {e4J0 - 1 if |03C6ij| ~ J0
1 otherwise.

Under (Hl), we know by Chebyshev’s inequality that for any f > 0, there exists
a finite constant Ce such that

?(sup ~ f logn)  4

Hence, for any f > 0, any sufficiently large n

sup ~ (9.2.12)4

almost surely, by the Borel-Cantelli lemma.
Moreover, according to Kesten [63] , if

A (r) = inf j} ~03B3:~03C6ij ~~ ~ J0)
~ ~ 

card((I, j) G ’f)
and if

pl = >_ Jo~  p~(2~ 1)~
there exists r0(p1) > 0, r0(p1) ~ 0 when pl ~ 0, such that for any ~ > 0,

lP( n U inf log n) > = 1 .

With (9.2.11) and (9.2.12), we conclude that almost surely, for any n and all
A G An , we have

provided that d(A( f ), A(g)) > ro log n.
o
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9.2.2 Ergodicity in infinite volume

We shall deduce from theorem 9.5 a stretched exponential decay towards equi-
librium of the Markov semi-group in infinite volume. We follow the steps of
chapter 8.2. The theorem states as follows.

Theorem 9.6 Assume that conditions (H ~~ and (H 2) are satisfied with pl > 0
sufficiently small. Then, there exists () E (0,1) such that for every local function
f, , with F-probability one, we have

I I Pl f - J ( f ) ~~  C(A( f ), I (9.2.13)

for any t ~ T (A( f ), J) and with almost surely finite positive random variables
C(A( f ), J) and T(A( f ), J).

Proof : Let a local function f be given. Assume no large enough so that
A(/) C Ano - [-no, +no]2. Let flo C JJ be a measurable set with ~? probability
one such that the conclusions of property 9.4 and theorem 9.3 are satisfied on

flo . Choosing L sufficiently large, we know that for such configurations of the
disorder, the conclusions of theorem 9.5 are satisfied. We thus have that

- 

 + IIPl f - PJ,nt f~~ + I
 I If I I + I I If I I I (9.2.14)

if d(A( f ), An)1-~ > Bt and is the Gibbs measure in finite volume with

free boundary conditions. We saw above that, with the result of theorem 9.5,
we have for any ~ E (0,1) and q = 1 + 

f ~  

 

(9.2.15)

We thus obtain that for n sufficiently large such that d(A( f ), An)1-’~ >_ Bt, or
in other words for n of order ~-~,

|PJt f(03C9) - Jf|  + e-At|||f|| 1 + 
(9.2.16)

Clearly, this bound can only help us if ~- (that is "~ n ) goes to infinity with n.
In particular, if this ratio goes to infinity faster than logarithmically with n, we
almost surely have

lim = 0.
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When d = 2, we have

with ~ going to zero as pi goes to zero. Consequently, when ;Q is sufficiently
small, choosing Bt, we obtain

IPl l ~ e-c0t03B1|||f|||
(9.2.17)

with a constant co > 0 and

a- 1_~1_~.° ~ 

1-r~ q 
°

Since we took t = with n > N(J) and an almost surely finite random
variable N(J), this result is obtained for t ~ T (J), with an almost surely finite
random time T(J). o



Chapter 10

Low temperature regime :
Z~ ergodicity in infinite
volume

At low temperature, it frequently happens that there are several coexisting
phases; (see e.g. [96], [45] and [90] for more detailed description of this phe-
nomenon and further references). For example, let us consider the ferromagnetic
Ising model given by the interaction Hamiltonian

HA ( ~ ) - _ ~ 

and

- 

fi 
with vA the product measure on the spins E A) with marginal law v =
( 1 /2) (~+1 + ~_ 1 ) . One knows that for sufficiently large ~3’s the following two
limits exist and are different,

lim E+ = +, lim E- = -

where + (resp. -) means that all spins at the boundary of the set A take
the value +1 (resp. -1). In such a setting, one cannot hope anymore the
infinite volume semi-group to be uniformly ergodic. However, one can look for
L2 ergodicity. For instance, it is expected that for ferromagnetic Ising model in
dimension 2, there exists a positive constant c such that for any local function
f

-  I

with f = + or - (see Fisher and Huse [40]).
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F. Martinelli [73] has shown that for any local function f and any M E 
there exists a finite constant c(A( f ), M) such that for all times t > 1, 

~+f)2  ~(~(f)~ 

His proof relies on the spectral gap estimate

m+ (L) = inf E+L (f( -L)f) E+L(f-E+Lf)2 
~ e -o(L)L (10. 0. 1)

if AL = [-L, L]2 and limL-+oo o(L) = 0. If mO(AL) denotes the spectral gap
constant with free boundary conditions, he also proved that

2 1 L - (10.0.2)

where Tp > 0 is the surface tension.

For related results on this subject, one can read [104] and [57].
We shall discuss hereafter the proof of (10.0.1) and (10.0.2), as well as that

of the LZ(~c+)- ergodicity of the semi-group in infinite volume.

10.1 Spectral gap estimate

10.1.1 Strategy
The strategy we propose below slightly differs from that originally proposed by
F. Martinelli relying on a clever use of auxiliary bloc dynamics. Here, we may
as well consider other auxiliary dynamics. However, both approaches are more
or less equivalent and require the same kind of basic estimates.

We shall denote by  a probability measure and will present a general scheme
to establish a spectral gap inequality for  with respect to a Dirichlet form ~.

The basic idea is to decouple the difficulties by introducing auxiliary opera-
tors. In fact, we see that if 03C0 is an operator in for any function f E L2( ),
the triangle inequality yields

Ilf - f~2  1 lf - 03C0f~2 + 1 lxf - (10.1.3)

Let us now assume that 7r was chosen so that there exists ð > 0 such that for
every bounded measurable function f ,

 (10.1.4)

Then, if 03C0 is self-adjoint in we have

~03C0f - f~2  (1 - 03B4)~f - f~2 (10.1.5)
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since (see [76] or [12])

sup 
~03C0f - f~2 ~f - f~2 

= lim (sup~03C0nf- f~~ ~f- f~~)1 n .

Hence, we deduce from (10.1.3) and (10.1.5) that

-  -~ ,f~~ 2. . ( 10.1.6 )

To obtain the desired result for the Dirichlet form under consideration, we need
the following additional property

~(f - ~f )2 - f ) (10.1.7)

for a finite constant C. Then, we conclude that

- _  f). ° ( 10.1.8 )

We recall that F. Martinelli [74], (following an idea of Holley), applied the
above strategy with the specific choice of

 = E03C9, 03C0 = 1 nE03C9i
for subsets Ai of A with possibly non empty intersection. Such a x generates
the so-called bloc spin flip dynamics.

The next exercise shows how it can be used to control the spectral gap in
the high temperature regime.

Exercise 10.1 [ See [74](Thm 4.5) ]
Let AL = [-L, L]2 ~ Zd. We assume in this exercise that the interaction is

of finite range and that the local Gibbs measure E03C9 on En satisfies the mixing
condition

for finite constants (C, M) > 0 (see section 5.,~.3 for the notations ). As a

consequence, there exists a unique Gibbs measure ~ in infinite volume for the
local specification A C ~). .

Show that if for any L E ~V, we set

mL = inf ... E03C9i+k,J(03A3i(~if)2) E03C9i+k,J(f,f)
with AK = [ki k1) x ... x [kd, there exist two finite constants c, c’ such that

. 

m(2L) > (1- (10.1.9)
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Show that for p E (l, 2), we can find Lo E ~V so that m(Lo) > m > 0 and
pL > 2-1(L + for L > Lo, to conctude that there exists a posative
constant m’ such that for odl r~ E ~V, m(La pn) > m’ > 0. Conclude.

Hint; Proceed by induction ; Consider a set R = l~] with l= _ L
for 1  i  d, with, to simplify the notations k = 0 an~ h > l2 > .. > ld,
ll > ~. Let, for k, n E IN, kn  ll/2, A1= ~0, ll/2 + x ~0, l2] x ... x 
and AZ = ~ll/2 + (n -1)k, ll] x ~0, l2] x ~ .. x Notice that, under our
hypotheses and since d(A(EA? f ), aAl) = d(A(EA1 f ), 8A2) = k, for i = 0, l,

~Ei+1E2-if - ERf~~  e-Mk~f - ERf~~.
Let ~r = + EA~). Show that for any integer p > 2

~03C0pf - ERf~~ ~ 1 2p ( + e-Mk)p~f - ERf~~

Deduce that since

(ER(03C0f - f ) 2)1 2 _  1 2E R(E A1 (f _E A1 f )2)1 2 + 1 2E R(E2(f-E2f) ) ,
we have

~E~( f - E~ f)2)’ _ (1- 

 ( ER ( (~if)2 + (~if)2))1 2.

i

Summing over n E {1, ..., bound - ER f )2)’ in ter~ns of m(A; )-1,
i=1, 2 and proceed by induction to bound similarly max{ m( A1) -1 , m(A2)-1 } to
arrive at

m(L) > (1- e-Mk)d(1 + n01)-dm(2-1L + nok),
Choose wisely M and no to conclude.

10.1.2 Spectral gap estimate
In the high temperature regime and in dimension 2, we choose, (compare ~74]),

Jl = EÁ, ~ = EA1... E~n 

with, for i E { l, ... , n = 2[2L/~EL]] ~ and E > 0

A~ _ [lEL](i -1)/2 - L; -1)/2 + [fL] - L] x ~o, L] .

Following the strategy stated below, we need to bound I I f - ~’f I I2 in terms
of the Dirichlet form and 03C0f - f uniformly. For the first term, the triangular
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inequality and local Gibbs measures property imply that
n 1

 2 (E+ (EA1... E1 ... 2)2
 2(E+(f - Eif)2)1 2. (10.1.10)

t=i

Moreover, property 2.7 shows that there exists a constant c(,Q)  oo such that

EA~ (f - EA~.f )2  ~ ./
Consequently, we obtain

n

( I.f - ~f I I2  I=1
 (10.1.11)

Moreover, F. Martinelli proved that for the ferromagnetic Ising model (see [74],
p. 68) the following bound is true

Property 10.2 For any i > 0, L sufficiently large,

~03C0f - E+f~~  E+f~~.
Consequently, for this model, we deduce that for any E > 0

E+(f - E+ f)2 ~ 8L ~(1-e-m~L)ec(03B2)~LE+((~jf)2) (10.1.12)
’~ ’ ~ jEA /

which gives the desired estimate on the spectral gap.
Property 10.2 relies on the precise knowledge of the fluctuations of the in-

terface between the phases of +1 spins and -1 spins in dimension 2 (see [30])
which allows to see that the restriction of the a-algebra generated
by i E [0, L] x [0, 1 - depends very weakly on the boundary condi-
tions Here, (+, +, +, ~ ) denotes the boundary conditions where all the spins
on the sides at north, south and west are equal to +1 whereas they take the
configuration w on the east side. This observation allows roughly speaking to
see that E1 E2 f ~ E1~2 for overlapping sets Ai = + L] x ki + L],
A2 = [k2, k2 + L] x [k2, k2 + L] with intersection of the form Ai n A2 = [k, k +

n [1,1 + L], and by induction that ~ f N .

In case of free boundary conditions, F. Martinelli [74] proved that
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Property 10.3 For any f > 0,

_ (1- (1+14~)(2L+1))~f ’- E+f~~
which in turn implies that

E1(f - Eo Af ) 2 _ ~ 
8L ~( a. ~ f ) 2 ( 10.1.1 3)
e 

jEA ~ /
and gives a lower bound on the spectral gap. F. Martinelli has also shown that
the bound (10.1.13) is on the right scale by bounding above the spectral gap by
choosing, in its definition as an infimum on test functions, the test function

f(03C3) = 1I03A3i~ 03C3i>0-1I03A3i~03C3i0.
10.2 L2 er g odicity in infinite volume
We obtained in the previous section spectral gap lower bounds in finite volume
decreasing with the volume faster than Following the remarks we did
when we studied the ergodicity for disordered systems, the method employed
there is in this case useless. In fact, one does not know in general how to deduce
ergodicity in infinite volume from such estimates. This is due to the lack of
balance between the finite volume approximation of the semi-group, which says
that we can approximate Pt f by f for n of order t, and the spectral gap
estimate which provides an exponential decay to equilibrium of f with speed
mnt, going to zero when n is of order t. -

Fortunately, in ferromagnetic models, the finite volume approximation of the
semi-group can be avoided. We briefly describe the arguments used in this case
restricting ourselves to the discrete spins and considering a generator

Lf = f ) = ci(03C3)~if

with 

ci (03C3) = 1 1+e203B203C3i03A3|i-j|=1 03C3j

and

a~f = f(~~~~) - f(~)~
Then, it is not hard to see that for any configuration (r, r~) such that ?y,
for any i and any j E 7~d,

 if 0’j = ~Jj = -1

and

~ if ~j = ?~j = +1.
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Thus, the more spins with state +1 will be contained in a given configuration,
the higher the probability that the Glauber dynamics will turn the spins into the
state +1. This heuristic can be characterized by the construction of a coupling
(see [92]) pt’~~ of and that is a probability measure on
the product space Q~ with marsinals and such that, with 
probability one, if for any j 6 , r~~  ~, then

~t(~) ~ ~t(~) b~ E ~~ P~’~ - a.s..
Also, one can construct a coupling rt’+’~ with the 

such that

~t( j)  ~~ ( j) 
Similarly, one can couple Pt (r~’ ) and Pt ’+ (+ 1 ) 0 ~Q~ =+1, the pro-
cess representing the last marginal then dominating the two others. In partic-
ular, for any t > 0,

= +1)(~l)  = +1)(+1). (10.2.14)
This property is the key point to overcome the finite volume approximation of
Markov semi-groups.

Note that this kind of property also exists for continuous models when,
roughly speaking, the potential is convex (see [54]).

We shall use it to show that

Property 10.4 For any function /~ , any M E R+ , and all t > 1,

Proof : Let us first notice that, on the discrete set ~ -1, +1 } ~d , the local
functions can be decomposed into sums of monomial functions of the type

iEX

for finite sets X C 
For such a function, we have

= 

= ~~(~(n~)-n~))’2 
iEX iEX

_ IXI ~+ ® ~+(Pi’~r I ~a(t) - ~i(t)I)2
sEX

= 4IXI ~+ ® ~+(Pt’~~f~=(t) ~ ~s(t)~)
~EX

 4IXI2~+ ® ~+(Pi’~~ ~~o(t) ~ ~o(t)~)
(10.2.15)
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with p,/’’1 a coupling between and Pt(~’). Here we used the invariance by
translation Therefore we only need to prove the estimate for = o~o.

According to the last remark, we have for any finite cube A,

~ (P~ ~ o( ) ~ o( )~)
 ~+ ® 
= ~+ ® ~+(p~’+~~o = +1)(+) - = +1)(~l))
= (~) - +Pt03C30
= P,+t03C30(+) - +03C30
 + 

 + (10.2.16)

where we used the definition of the spectral gap constant and introduced by force
the Gibbs measure E~. Finally, let us recall that (see [30]), if A = (-L, L~2,

 

Thus, by the estimate on the spectral gap inequality obtained in the last section,

+(Ptf - +f)2 ~ 4|X|2(e203B2L2-e-o(L)Lt + (10.2.17)

Optimizing on L, we take L = ~M log t~ for M E IR+ showing that we can find
a finite constant C(M) so that

~+(Pt f - ~c+ f )2  (10.2.18)



Epilogue 2001
Since in recent years infinite dimensional analysis is undergoing an inter-

esting accelleration, we would like to sketch briefly some recent results in this
domain, many of which appeared between our IHP course and the beginning of
the new millenium.

One of the key recent achievements we should mention is the discovery of a
new wealth of functional inequalities possessing the tensorization property.

We first recall that in connection to the isoperimetric problem the following
functional inequality for a probability measure p, called BBL2 inequality, was
introduced in [10]

I( (f)) ~ I(f)2 + c|~f|2 (11.1.1)
with the Levy-Gromov isoperimetric function Z = ~ o ~’ ~ defined by the distri-
bution = ~ dy = (1/2~r) with some constant c E (0, oo)
independent of a function 0 ~ f  1 for which the length of the gradient 
is  integrable.

The primary feature of this inequality is that it can be tensorized and so
is suitable for infinite dimensional situations. Secondly, because the function
Z vanishes at the end points of the interval [0,1], by choosing an appropriate
approximation of a characteristic function of a set A, in the limit we obtain the
following isoperimetric relation

I(Jl(A))  c 

with measure 8Jl of the surface 8A related to the natural metric defined by

~ (~A ) ~ 
lim 1 ~ 

( (A~ ) - (A ))

where {03C9 : dist(03C9, A)  ~} is the enlargement of the set A in the natural
metric d( ~, ~ ) .

In [10] the inequality (11.1.1) was proved for the two point symmetric mea-
sure and extended via a central limit theorem to the Gaussian measure. Later
in [7] these results were extended to the probability measures on smooth (con-
nected) finite dimensional Remannian manifolds as well as their products via
a condition similar to the one of Bakry and Emery. In this paper it was also

shown that in the case of continuous distributions, (11.1.1) implies the Loga-
rithmic Sobolev inequality. To get this implication in full generality one can use
the following arguments (which idea is due to W. Beckner). Substituting E f in
place of f in (11.1.1) with ê E (0,1) and using the fact that

lim =1

x2log1 x
one can see that for small ~ inequality (11.1.1) is essentially equivalent to the
following bound
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~/~21og20142014  ~2~~1og-+~~V/!~
From this by elementary transformations one gets

0  + + P f2 + z(f2 log 1 f)
with z = l/(21og ~). . Hence, dividing by z and passing to the limit z -~ 0, after
making simple rearrangements one recovers the following Logarithmic Sobolev
inequality

~(/Iog~)2c~V/~ (11.1.2)

The topic of functional isoperimetric inequalities was pursued later in [116]
where a unified general strategy was presented for proving BBLq inequalities for
Gibbs and PCA measures, (possibly with other lq norms, q ~ [l,oo], replacing
the ~2 one in the integrand on the right hand side of (11.1.1)), which included
both continuous and discrete cases. Besides other things, in conjunction with
the above implication of LS from BBL2, this provides yet another potentially
more effective way of proving Logarithmic Sobolev inequalities.

In a related direction we would also like to mention a very nice work [42]
in which the converse implication (LS =~ BBL2) was proved in the continuous
case. By this a similar picture was attained as in the classical finite dimensional
situation where the equivalence between Sobolev inequality and isoperimetry is
well known.

As the reader could see in early chapters, the Logarithmic Sobolev inequal-
ity has a number of abstract consequences including the Gaussian exponential
bound for Lipschitz random variables. Although it is a nice and useful informa-
tion, in many respects it is not satisfactory. First of all one should expect that
the measures with super-Gaussian tails, (that is decaying faster than Gaussian
one), should have better exponential bounds. This can be easily checked in
finite dimensions and one would like to have a similar result independently of
dimension of the space. Secondly, the Logarithmic Sobolev inequalities do not
provide any information for a set of measures with sub-Gaussian tails, (that
is the ones which have slower distribution tails than for Gaussians but faster

than Poissonian). In connection to these problems we would like to mention
two recent works : [117] and [65].

In [117] a systematic theory of entropy bounds was derived for a general class
of measures including Gibbs and PCA measures possessing the sub- and super-
Gaussian tails on a noncompact space . In particular for the sub - Gaussian
case under suitable mixing assumption we obtain the following inequality

 2c ~ ~V~ (11.1.3)
~ 
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where the summation runs over the multi-indices a of given finite order and
E takes on values in a finite set which includes 1 and some fractions; both of
them -as well as the constant c E (0,oo)- are independent of a function f but
may depend on the decay of the tail of the measure Following the standard
route, which the reader could learn in our lectures in case of the special case of
Logarithmic Sobolev inequality, one can conclude from (11.1.3) a spectral gap
inequality as well as optimal exponential bounds (with a closed formula of the
bound for sufficiently smooth functions). Additionally the inequality (11.1.3)
provides us with an asymptotic control of the central limit procedure via which
we arrive at the Logarithmic Sobolev inequality for a Gaussian measure.

In the super-Gaussian case one obtains the following entropy bound

(f2 log f 2 2 )  2c {( |~if|2)03B8}( (f - f)2))1-03B8 (11.1.4)

with 8 E (0,1) dependent on the tail of the measure It again allows to recover
the optimal exponential bound.

The main idea in deriving these relative entropy bounds is to use the Classical
Sobolev inequalities for finite dimensional conditional expectations in the form
of [85] and apply a kind of inductive procedure similar to the one described
in our lectures and based on the additivity properties of the relative entropy
functional. (The complications which make ~’s appear in the sub-Gaussian case
are due to the desire of making the result independent of the choice of the
conditioning procedure.)

In this way one obtains an infinite dimensional theory which includes the for
a long time lonely case of Logarithmic Sobolev inequality and which exhibits a
direct link with the finite dimensional theory of Classical Sobolev inequalities.

The second paper mentioned above, [65], deals in a nice way with the sub-
Gaussian measures which are the products of one dimensional probability mea-
sures of the form v(dx) = where s E (1, 2) and Z is a normaliza-
tion constant. The authors show that the following inequality is true for any
p E (1~ 2)

 C(2 - (11.1.5)
where ~f~p is the ILp norm of a function f corresponding to the measure 0
defined as the product of copies of the measure v and the constant a = 2’ s 1. .

We remark that if a = 1 the above inequality would imply the Logarithmic
Sobolev inequality; (similar infinitesimal control of the norms in some other
context one can find in [8]).

By induction and appropriate choice of p the authors of [65] derive an expo-
nential bound for Lipschitz functions which is essentially optimal.

We would like to present briefly the arguments leading to ( 11.1.5) in the fol-
lowing useful way. First, given a sequence of transition matrices (or conditional
expectations) En, n E W such that
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= ~F

for some probability measure we set f n = with 10 = f for a
nonnegative function f . Next we note that 

~ ~

= = ~ - +~ (Elfp)p (11.1.6)

_~ 

Hence, assuming the following ergodicity property

lim ~fn-1~2Lp(En) _ (11.1.7)

by induction, we arrive at

= ~ En(f~-1) ’ + (~(fp))p (11.1.8)
n~N

Thus, if one has

En(f2n-1)-(Enfpn-1)2 p  CpEn|~nfn-1|2 (11.1.9)
we obtain

Cp ~ + (11.1.10)
n~IN

Since ( En _ 1 f n _ 2 ) p if the probability measures En-1 do not depend on
the n-th variables (as in the product case), by Minkowski and Holder inequalities
one gets

(11.1.11)
 En-1|~nfn-2|2

and by induction one arrives at

~ - (11.1.12)
Thus combining (11.1.10) - (11.1.12) we arrive at

 Cp ~ + (11.1.13)
n~IN

This ends the proof of the product case considered in [65]
If En-1 depends on the n-th variable, (as needed to be able to include the

Gibbs of PCA measures), we need to use similar arguments as described in
our lectures. To this end one needs to consider finite dimensional conditional
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expectations EA relevant in the present case given as bounded (Lipschitz) per-
turbations of the sub-Gaussian product measure. One notes that

|~i(EFp)1 p| = |1 p(EFp)1 p-1~i(EFp) | (11.1.14)

and because (of the definition of EA) one has

= I (11.1,15)

using spectral gap inequality (in 1Lp), via simple arguments one arrives at a
bound of the following form

|~i(EFp)1 p| ~ |(E|~iF|p)1 p + C (ll.l.ls)
jEA

with some positive constant C and denoting the total variation of
with respect to the coordinates indexed by points in the finite set A.

If necessary, to take full advantage of mixing, one may follow the same induc-
tive idea of conditioning as used in the case of Logarithmic Sobolev inequalities
to show appropriate sweeping out relations for the present case (taking advan-
tage of Holder inequality at the end to recover the Dirichlet form).

Finally to complete the arguments we need to argue that the finite dimen-
sional expectations EA do satisfy the (11.1.5). Fortunately to this end it is
sufficient to get this property for one dimensional measure which for Lipschitz
perturbations can be achieved by appropriate change of integration variables
allowing to express the expectations with respect to perturbed measure by in-
tegrals with respect to the simple measures considered in [65]; (the case of
arbitrary finite A can be recovered by the inductive arguments used above).

Summarizing we have the following result : :
If Jl is a Gibbs (or PCA ) measure corresponding to a mixing local specifica-

tion EA, A CC with sub-Gaussian tails, then there is a E (o,1) such that
the following inequality is true

)  C(2 - (11.1,17)

with some constant C E (0, oo) for any p E (1, 2) and any function f in the
domain of the Dirichlet form.

Unlike the entropy bounds presented before, inequality (11.1.17) does not
converge to the Logarithmic Sobolev inequality in the central limit.

We remark that there is still another way of approaching the infinite dimen-
sional bounds which has very nice functional analytic flavour and is based on
the following inequality

C (l lEnf - (11.1.18)
nE~
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with some constant C E denotes the Orlicz norm cor-
responding to a measure P and an appropriate interpolating Orlicz function
N, with En , n E W, denoting a sequence of conditional expectation associated
to the measure ~. The inequality (11.1.18) holds for the 12 norm as well as
the norm corresponding to the Orlicz function N(x) = x2log(1 + x2) relevant
in the Logarithmic Sobolev inequality, (the latter follows from the equivalence
of relative entropy and square of the related norm; see e.g. [11]). Using this
together with the interpolation theory (cf [81]) one arrives at ( 11.1.18) .

If one chooses the sequence of conditional expectations in the way that in
each particular term in the sum on the right hand side of (11.1.18) we essentially
have a finite dimensional measure in the corresponding Orlicz norms, one can
bound each term by using an appropriate finite dimensional coercive inequality
(e.g. using a one following from the Classical Sobolev inequality as in [85]). In
this way one can arrive (first for product measures and then using our sweeping
out relations) to an Orlicz-Poincare inequality.

Although the Orlicz-Poincare inequalities provide an elegant way of describ-
ing the properties of the infinite dimensional theory, it takes some work to
recover from them the properties of interest to us. Moreover also in the present
case the central limit does not lead us directly to the Logarithmic Sobolev in-
equality.

We would also like to mention some other directions including in particular
an interesting development related to the so called concentration of measure
phenomenon, referring to [66] for a detailed description of the related results
together with a comprehensive set of references (including in particular number
of key works of Talagrand).

Finally one should also mention a recent development in analysis of dissi-
pative dynamics on noncommutative algebras (see the lecture notes [118] for a
comprehensive introduction). This in particular includes a framework for hy-
percontractivity and logarithmic Sobolev inequality in noncommutative ILp -
spaces as well as the corresponding tensorization property. Given these key in-
gredients one may hope for further progress in this difficult domain in a close
future.
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