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Preface

These lecture notes are indented as a straightforward introduction to partial
differential equations which can serve as a textbook for undergraduate and
beginning graduate students.

For additional reading we recommend following books: W. I. Smirnov [17],
I. G. Petrowski[13], W. A. Strauss [19], F. John [8], L. C. Evans [5] and
R. Courant and D. Hilbert [4]. Some material of these lecture notes was
taken from some of these books.
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Chapter 1

Introduction

Ordinary and partial differential equations occur in many applications. An
ordinary differential equation is a special case of a partial differential equation
but the behaviour of solutions is quite different in general. It is much more
complicated in the case of partial differential equations caused by the fact
that the functions for which we are looking at are functions of more than one
independent variable.

Equation

F (x, y(x), y′(x), . . . , y(n)) = 0

is an ordinary differential equation of n-th order for the unknown function
y(x), where F is given.

An important problem for ordinary differential equations is the initial
value problem

y′(x) = f(x, y(x))

y(x0) = y0 ,

where f is a given real function of two variables x, y and x0, y0 are given
real numbers.

Picard-Lindelöf Theorem. Suppose
(i) f(x, y) is continuous in a rectangle

Q = {(x, y) ∈ R
2 : |x − x0| < a, |y − y0| < b}.

7
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Figure 1.1: Initial value problem

(ii) There is a constant K such that |f(x, y)| ≤ K for all (x, y) ∈ Q.
(ii) Lipschitz condition: There is a constant L such that

|f(x, y2) − f(x, y1)| ≤ L|y2 − y1|

for all (x, y1), (x, y2).

Then, there exists a unique solution y ∈ C1(x0−α, x0+α) of the above initial
value problem, where α = min(b/K, a).

The linear ordinary differential equation

y(n) + an−1(x)y(n−1) + . . . a1(x)y′ + a0(x)y = 0,

where aj are continuous functions, has exactly n linearly independent solu-
tions. In contrast to this property the partial differential uxx +uyy = 0 in R

2

has infinitely many linearly independent solutions in the linear space C2(R2).

For the ordinary differential equation of second order

y′′(x) = f(x, y(x), y′(x))

there exist in general a family of solutions with two free parameters. Thus,
it is naturally to consider the associated initial value problem

y′′(x) = f(x, y(x), y′(x))

y(x0) = y0, y′(x0) = y1,
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where y0 and y1 are given, or to consider the boundary value problem

y′′(x) = f(x, y(x), y′(x))

y(x0) = y0, y(x1) = y1.

y

y
0

x x

y
1

0 x1

Figure 1.2: Boundary value problem

Initial and boundary value problems play also an important role in the
theory of partial differential equations. A partial differential equation for the
unknown function u(x, y) is for example

F (x, y, u, ux, uy, uxx, uxy, uyy) = 0,

where the function F is given. This equation is of second order.

An equation is said to be of n-th order if the highest derivative which
occurs are of order n.

An equation is said to be linear if the unknown function and its derivatives
are linear in F . For example,

a(x, y)ux + b(x, y)uy + c(x, y)u = f(x, y),

where the functions a, b, c and f are given, is a linear equation of first order.

An equation is said to be quasilinear if the highest derivatives occur lin-
early in the equation. For example,

a(x, y, u, ux, uy)uxx + b(x, y, u, ux, uy)uxy + c(x, y, u, ux, uy)uyy = 0

is a quasilinear equation of second order.
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1.1 Examples

1. uy = 0, where u = u(x, y). All functions u = w(x) are solutions.

2. ux = uy, where u = u(x, y). A change of coordinates transforms this
equation into an equation of the first example. Set ξ = x + y, η = x − y,
then

u(x, y) = u

(
ξ + η

2
,
ξ − η

2

)
=: v(ξ, η).

Assume u ∈ C1, then

vη =
1

2
(ux − uy).

If ux = uy, then vη = 0 and vice versa, thus v = w(ξ) are solutions for
arbitrary C1-functions w(ξ). Consequently, we have a large class of solutions
of the original partial differential equation: u = w(x + y) with an arbitrary
C1-function w.

3. A necessary and sufficient condition that for given C1-functions M, N
the integral ∫ P1

P0

M(x, y)dx + N(x, y)dy

is independent of the curve which connects the points P0 with P1 in a simply
connected domain Ω ⊂ R

2 is the partial differential equation (condition of
integrability)

My = Nx

in Ω.

This is one equation for two functions. A large class of solutions are given
by M = Φx, N = Φy, where Φ(x, y) is an arbitrary C2-function. It follows
from Gauss theorem that these are all C1-solutions of the above differential
equation.

4. Method of an integrating multiplier for an ordinary differential equation.
Consider the ordinary differential equation

M(x, y)dx + N(x, y)dy = 0
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Figure 1.3: Independence of the path

for given C1-functions M, N . Then we seek a C1-function µ(x, y) such that
µMdx+µNdy is a total differential, that is, that (µM)y = (µN)x is satisfied.
This is a linear partial differential equation of first order for µ:

Mµy − Nµx = µ(Nx − My).

5. Two C1-functions u(x, y) and v(x, y) are said to be functionally dependent
if

det

(
ux uy

vx vy

)
= 0,

that is, if
uxvy − uyvx = 0.

This is a linear partial differential equation of first order for u if v is a given
C1-function. A large class of solutions is given by

u = H(v(x, y)),

where H is an arbitrary C1-function.

6. Cauchy-Riemann equations. Set f(z) = u(x, y)+iv(x, y), where z = x+iy
and u, v are given C1(Ω)-functions. Here is Ω a domain in R

2. If the function
f(z) is differentiable with respect to the complex variable z then u, v satisfy
the Cauchy-Riemann equations

ux = vy, uy = −vx.
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It is known from the theory of functions of one complex variable that the
real part u and the imaginary part v of a differentiable function f(z) are
solutions of the Laplace equation

4u = 0, 4v = 0,

where 4u = uxx + uyy.

7. The Newton potential

u =
1√

x2 + y2 + z2

is a solution of the Laplace equation in R
3 \ (0, 0, 0), that is, of

uxx + uyy + uzz = 0.

8. Heat equation. Let u(x, t) be the temperature of a point x ∈ Ω at time
t, where Ω ⊂ R

3 is a domain. Then u(x, t) satisfies in Ω × [0,∞) the heat
equation

ut = k4u,

where 4u = ux1x1 +ux2x2 +ux3x3 and k is a positive constant. The condition

u(x, 0) = u0(x), x ∈ Ω,

where u0(x) is given, is an initial condition associated to the above heat
equation. The condition

u(x, t) = h(x, t), x ∈ ∂Ω, t ≥ 0,

where h(x, t) is given is a boundary condition for the heat equation.
If h(x, t) = g(x), that is, h is independent of t, then one expects that

the solution u(x, t) tends to a function v(x) independent of t if t → ∞.
Moreover, it turns out that v is the solution of the boundary value problem
for the Laplace equation

4u = 0 in Ω

u = g(x) on ∂Ω.
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Figure 1.4: Oscillating string

9. Wave equation. The wave equation

utt = c24u,

where u = u(x, t) and c is a positive constant, describes, for example, oscilla-
tions of membranes or of three dimensional domains. In the one dimensioal
case

utt = c2uxx

describes oscillations of a string, for example.
Associated initial conditions are

u(x, 0) = u0(x), ut(x, 0) = u1(x),

where u0, u1 are given functions. That is, the initial position and the initial
velocity are prescribed.

If the string is finite one describes additionally boundary conditions, for
example

u(0, t) = 0, u(l, t) = 0 for all t ≥ 0.

1.2 Equations from variational problems

A large class of ordinary and partial differential equations arise from varia-
tional problems.

1.2.1 Ordinary differential equations

Set

E(v) =

∫ b

a

f(x, v(x), v′(x)) dx



14 CHAPTER 1. INTRODUCTION

and for given ua, ub ∈ R

V = {v ∈ C2[a, b] : v(a) = ua, v(b) = ub},
where −∞ < a < b < ∞ and f is sufficiently regular. One of the basic
problems in the calculus of variation is

(P ) minv∈V E(v).

y

y
0

y
1

xa b

Figure 1.5: Admissible variations

Euler equation. Let u ∈ V be a solution of (P), then

d

dx
fu′(x, u(x), u′(x)) = fu(x, u(x), u′(x))

in (a, b).

Proof. Exercise. Hints: For fixed φ ∈ C2[a, b] with φ(a) = φ(b) = 0 and
real ε, |ε| < ε0, set g(ε) = E(u + εφ). Since g(0) ≤ g(ε) it follows g′(0) = 0.
Integration by parts in the formula for g′(0) and the following basic lemma
in the calculus of variations imply Euler equation.

Basic lemma in the calculus of variations. Let h ∈ C(a, b) and
∫ b

a

h(x)φ(x) dx = 0
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for all φ ∈ C1
0(a, b). Then h(x) = 0 on (a, b).

Proof. Assume h(x0) > 0 for an x0 ∈ (a, b), then there is a δ > 0 such that
(x0 − δ, x0 + δ) ⊂ (a, b) and h(x) ≥ h(x0)/2 on (x0 − δ, x0 + δ). Set

φ(x) =

{
(δ2 − |x − x0|2)2

if x ∈ (x0 − δ, x0 + δ)
0 if x ∈ (a, b) \ [x0 − δ, x0 + δ]

.

Thus φ ∈ C1
0(a, b) and

∫ b

a

h(x)φ(x) dx ≥ h(x0)

2

∫ x0+δ

x0−δ

φ(x) dx > 0,

which is a contradiction to the assumption of the lemma.

1.2.2 Partial differential equations

The same procedure as above applied to the following multiple integral leads
to a second order quasilinear partial differential equation. Set

E(v) =

∫

Ω

F (x, v,∇v) dx,

where Ω ⊂ R
n is a domain, x = (x1, . . . , xn), v = v(x) : Ω 7→ R, and

∇v = (vx1 , . . . , vxn
). It is assumed that the function F is sufficiently regular

in its arguments. For a given function h, defined on ∂Ω, set

V = {v ∈ C2(Ω) : v = h on ∂Ω}.

Euler equation. Let u ∈ V be a solution of (P), then

n∑

i=1

∂

∂xi

Fuxi
− Fu = 0

in Ω.

Proof. Exercise. Hint: Extend the above fundamental lemma of the calculus
of variations to the case of multiple integrals. The interval (x0 − δ, x0 + δ) in
the definition of φ must be replaced by a ball with center at x0 and radius δ.
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Example: Dirichlet integral

In two dimensions the Dirichlet integral is given by

D(v) =

∫

Ω

(
v2

x + v2
y

)
dxdy

and the associated Euler equation is the Laplace equation 4u = 0 in Ω.
Thus, there is natural relationship between the boundary value problem

4u = 0 in Ω, u = h on ∂Ω

and the variational problem
min
v∈V

D(v).

But these problems are not equivalent in general. It can happen that the
boundary value problem has a solution but the variational problem has no
solution, see for an example Courant and Hilbert [4], Vol. 1, p. 155, where h
is a continuous function and the associated solution u of the boundary value
problem has no finite Dichlet integral.

The problems are equivalent, provided the given boundary value function
h is in the class H1/2(∂Ω), see Lions and Magenes [11].

Example: Minimal surface equation

The non-parametric minimal surface problem in two dimensions is to find
a minimizer u = u(x1, x2) of the problem

min
v∈V

∫

Ω

√
1 + v2

x1
+ v2

x2
dx,

where for given function h defined on the boundary of the domain Ω

V = {v ∈ C1(Ω) : v = h on ∂Ω}.

Suppose that the minimizer satisfies the regularity assumption u ∈ C2(Ω),
then u is a solution of the minimal surface equation (Euler equation) in Ω

∂

∂x1

(
ux1√

1 + |∇u|2

)
+

∂

∂x2

(
ux2√

1 + |∇u|2

)
= 0. (1.1)
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Figure 1.6: Minimal surface

In fact, the additional assumption u ∈ C2(Ω) is superflous since it follows
from regularity considerations for quasilinear elliptic equations of second or-
der, see for example Gilbarg and Trudinger [7].

Let Ω = R
2. Each linear function is a solution of the minimal surface

equation (1.1). It was shown by Bernstein [2] that these functions are all
solutions of the minimal surface quation. This is true for higher dimensions
n ≤ 7, see Simons [15]. If n ≥ 8, then there exists also other solutions which
define cones, see Bombieri, Giust and De Giorgi [3].

The linearized minimal surface equation over u ≡ 0 is the Laplace equa-
tion 4u = 0. In R

2 linear functions are solutions but also many other func-
tions in contrast to the minimal surface equation. This striking difference is
caused by the strong nonlinearity of the minimal surface equation.

More general minimal surfaces are described by using parametric repre-
sentations. An example is shown in Figure 1.71. See [14],pp. 62, for example,
for rotationally symmetric minimal surfaces.

1An experiment from Beutelspacher’s Mathematikum, Wissenschaftsjahr 2008, Leipzig
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Figure 1.7: Rotationally symmetric minimal surface

Neumann type boundary value poblems

Set V = C1(Ω) and

E(v) =

∫

Ω

F (x, v,∇v) dx −
∫

∂Ω

g(x, v) ds,

where F and g are given sufficiently regular functions and Ω ⊂ R
n is a

bounded and sufficiently regular domain. Assume u is a minimizer of E(v)
in V , that is

u ∈ V : E(u) ≤ E(v) for all v ∈ V,

then

∫

Ω

( n∑

i=1

Fuxi
(x, u,∇u)φxi

+ Fu(x, u,∇u)φ
)

dx

−
∫

∂Ω

gu(x, u)φ ds = 0
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for all φ ∈ C1(Ω). Assume additionally u ∈ C2(Ω), then u is a solution of
the Neumann type boundary value problem

n∑

i=1

∂

∂xi

Fuxi
− Fu = 0 in Ω

n∑

i=1

Fuxi
νi − gu = 0 on ∂Ω,

where ν = (ν1, . . . , νn) is the exterior unit nornal at the boundary ∂Ω. This
follows after integration by parts from the basic lemma of the calculus of
variations.

Example: Laplace equation

Set

E(v) =
1

2

∫

Ω

|∇u|2 dx −
∫

∂Ω

h(x)v ds,

then the associated boundary value problem is

4u = 0 in Ω
∂u

∂ν
= h on ∂Ω.

Example: Capillary equation

Let Ω ⊂ R
2 and set

E(v) =

∫

Ω

√
1 + |∇u|2 dx +

κ

2

∫

Ω

v2 dx − cos γ

∫

∂Ω

v ds.

Here is κ a positive constant (capillarity constant) and γ is the (constant)
boundary contact angle, that is, the angle between the container wall and
the capillary surface defined by u = u(x1, x2) at the boundary. Then, the
related boundary value problem is

div (Tu) = κu in Ω

ν · Tu = cos γ on ∂Ω,
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where we use the abbreviation

Tu =
∇u√

1 + |∇u|2
,

div (Tu) is equal to the left hand side of the minimal surface equation (1.1).
The above problem discribes the ascent of a liquid, water for example, in

a vertical cylinder with cross section Ω. It is asumed that gravity is directed
downward in the direction of the negative x3-axis. Figure (1.8) shows that
liquid can rise along a vertical wedge which is consequence of the strong
nonlinearity of the underlying equations, see Finn [6]. This photo was taken

Figure 1.8: Ascent of liquid in a wedge

from [12].
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1.3 Exercises

1. Find nontrivial solutions u of

uxy − uyx = 0 .

2. Prove: In the linear space C2(R2) there are infinitely many linearly
independent solutions of 4u = 0 in R

2.

Hint. Real and imaginary part of holomorph functions are solutions of
the Laplace equation.

3. Find all radially symmetric functions which satisfy the Laplace equa-
tion in R

n\{0} for n ≥ 2. A function u is said to be radially symmetric
if u(x) = f(r), where r = (

∑n
i x2

i )
1/2.

Hint. Show that a radially symmetric u satisfies 4u = r1−n (rn−1f ′)
′

by using ∇u(x) = f ′(r)x
r
.

4. Prove the basic lemma in the calculus of variations: Let Ω ⊂ R
n be a

domain and f ∈ C(Ω) such that

∫

Ω

f(x)h(x) dx = 0

for all h ∈ C2
0(Ω). Then f ≡ 0 in Ω.

5. Prove the basic lemma in the calculus of variations: Let S = ∂Ω be
sufficiently regular and f ∈ C0(∂Ω) such that

∫

∂Ω

f(x)h(x) dS = 0

for all h ∈ C(∂Ω). Then f ≡ 0 on ∂Ω.

6. Write the minimal surface equation (1.1) as a quasilinear equation of
second order.
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7. Prove that a sufficiently regular minimizer in C1(Ω) of

E(v) =

∫

Ω

F (x, v,∇v) dx −
∫

∂Ω

g(v, v) ds,

is a solution of the boundary value problem

n∑

i=1

∂

∂xi

Fuxi
− Fu = 0 in Ω

n∑

i=1

Fuxi
νi − gu = 0 on ∂Ω,

where ν = (ν1, . . . , νn) is the exterior unit nornal at the boundary ∂Ω.

8. Prove that ν · Tu = cos γ on ∂Ω, where γ is the angle between the
container wall, which is here a cylinder, and the surface S defined by
u = u(x1, x2) at the boundary of S, ν is the exterior normal at ∂Ω.

Hint. The angle between two surfaces is by definition the angle between
the two associated normals at the intersection of the surfaces.

9. Let u ∈ C2(Ω) be a solution of

div Tu = C in Ω

ν · ∇u√
1 + |∇u|2

= cos γ on ∂Ω,

where C is a constant.

Prove that

C =
|∂Ω|
|Ω| cos γ .

Hint. Integrate the differential equation over Ω.

10. Assume that Ω = BR(0) is a disc with radius R and the center at
the origin. Show that radially symmetric solutions u(x) = w(r), r =√

x2
1 + x2

2, of the capillary boundary value problem are solutions of
(

rw′

√
1 + w′2

)′

= κrw in 0 < r < R

w′

√
1 + w′2

= cos γ if r = R.
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Remark. It follows from a maximum principle of Concus and Finn [6]
that a solution of the capillary equation over a disc must be radially
symmetric.

11. Find all radially symmetric solutions of

(
rw′

√
1 + w′2

)′

= Cr in 0 < r < R

w′

√
1 + w′2

= cos γ if r = R.

Hint. From an exercise above it follows that

C =
2

R
cos γ.

12. Show that div Tu is twice the mean curvature of the surface defined
by z = u(x1, x2).
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Chapter 2

Equations of first order

For a given sufficiently regular function F the general equation of first order
for the unknown function u(x) is

F (x, u,∇u) = 0

in Ω ∈ R
n. The main tool for studying related problems is the theory of

ordinary differential equations. This is quite different for systems of partial
differential of first order.

The general linear partial differential equation of first order can be written
as

n∑

i=1

ai(x)uxi
+ c(x)u = f(x)

for given functions ai, c and f . The general quasilinear partial differential
equation of first order is

n∑

i=1

ai(x, u)uxi
+ c(x, u) = 0.

2.1 Linear equations

Let us begin with the linear homogeneous equation

a1(x, y)ux + a2(x, y)uy = 0. (2.1)

25
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Assume there is a C1-solution z = u(x, y). This function defines a surface S
which has at P = (x, y, u(x, y)) the normal

N =
1√

1 + |∇u|2
(−ux,−uy, 1)

and the tangential plane

ζ − z = ux(x, y)(ξ − x) + uy(x, y)(η − y).

Set p = ux(x, y), q = uy(x, y) and z = u(x, y). The tupel (x, y, z, p, q) is
called surface element and the tupel (x, y, z) support of the surface element.
The tangential plane is defined by the surface element. On the other hand,
differential equation (2.1)

a1(x, y)p + a2(x, y)q = 0

defines at each support (x, y, z) a bundle of planes if we consider all (p, q) sat-
isfying this equation. For fixed (x, y) this family of planes Π(λ) = Π(λ; x, y)
is defined by a one parameter family of ascents p(λ) = p(λ; x, y), q(λ) =
q(λ; x, y). The envelope of these planes is a line since

a1(x, y)p(λ) + a2(x, y)q(λ) = 0,

which implies that the normal N(λ) on Π(λ) is perpendicular on (a1, a2, 0).
Consider a curve x(τ) = (x(τ), y(τ), z(τ)) on S, let Tx0 be the tangential

plane at x0 = (x(τ0), y(τ0), z(τ0)) of S and consider the line on Tx0

L : l(σ) = x0 + σx′(τ0), σ ∈ R,

see Figure 2.1
We assume L coincides with the envelope, which is a line here, of the

family of planes Π(λ) at (x, y, z). Assume that Tx0 = Π(λ0) and consider
two planes

Π(λ0) : z − z0 = (x − x0)p(λ0) + (y − y0)q(λ0)

Π(λ0 + h) : z − z0 = (x − x0)p(λ0 + h) + (y − y0)q(λ0 + h).

At the intersection l(σ) we have

(x − x0)p(λ0) + (y − y0)q(λ0) = (x − x0)p(λ0 + h) + (y − y0)q(λ0 + h).
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Figure 2.1: Curve on a surface

Thus,
x′(τ0)p

′(λ0) + y′(τ0)q
′(λ0) = 0.

From the differential equation

a1(x(τ0), y(τ0))p(λ) + a2(x(τ0), y(τ0))q(λ) = 0

it follows
a1p

′(λ0) + a2q
′(λ0) = 0.

Consequently

(x′(τ), y′(τ)) =
x′(τ)

a1(x(τ, y(τ))
(a1(x(τ), y(τ)), b(x(τ), y(τ)),

since τ0 was an arbitrary parameter. Here we assume that x′(τ) 6= 0 and
a1(x(τ), y(τ)) 6= 0.

Then we introduce a new parameter t by the inverse of τ = τ(t), where

t(τ) =

∫ τ

τ0

x′(s)

a1(x(s), y(s))
ds.

It follows x′(t) = a1(x, y), y′(t) = a2(x, y). We denote x(τ(t)) again by x(t).
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Now, we consider the initial value problem

x′(t) = a1(x, y), y′(t) = a2(x, y), x(0) = x0, y(0) = y0. (2.2)

From the theory of ordinary differential equations it follows (Theorem of
Picard-Lindelöf) that there is a unique solution in a neighbouhood of t = 0
provided the functions a1, a2 are in C1. From this definition of the curves
(x(t), y(t)) is follows that the field of directions (a1(x0, y0), a2(x0, y0)) defines
the slope of these curves at (x(0), y(0)).

Definition. Differential equations in (2.2) are called characteristic equations
or characteristic system and solutions of the associated initial value problem
are called characteristic curves.

Definition. A function φ(x, y) is said to be an integral of the characteristic
system if φ(x(t), y(t)) = const. for each characteristic curve. The constant
depends on the characteristic curve considered.

Proposition 2.1. Assume φ ∈ C1 is an integral, then u = φ(x, y) is a
solution of (2.1).

Proof. Consider for given (x0, y0) the above initial value problem (2.2). Since
φ(x(t), y(t)) = const. it follows

φxx
′ + φyy

′ = 0

for |t| < t0, t0 > 0 and sufficiently small. Thus

φx(x0, y0)a1(x0, y0) + φy(x0, y0)a2(x0, y0) = 0.

Remark. If φ(x, y) is a solution of equation (2.1) then also H(φ(x, y)),
where H(s) is a given C1-function.

Examples

1. Consider
a1ux + a2uy = 0,
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where a1, a2 are constants. The system of characteristic equations is

x′ = a1, y′ = a2.

Thus, the characteristic curves are parallel straight lines defined by

x = a1t + A, y = a2t + B,

where A, B are arbitrary constants. From these equations it follow that

φ(x, y) := a2x − a1y

is constant along each characteristic curve. Consequently, see Proposition
2.1, u = a2x− a1y is a solution of the differential equation. From an exercise
it follows that

u = H(a2x − a1y), (2.3)

where H(s) is an arbitrary C1-function, is also a solution. Since u is constant
when a2x − a1y is constant, equation (2.3) defines cylinder surfaces which
are generated by parallel straight lines which are parallel to the (x, y)-plane,
see Figure 2.2.

y

z

x

Figure 2.2: Cylinder surfaces
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2. Consider the differential equation

xux + yuy = 0.

The characteristic equations are

x′ = x, y′ = y,

and the characteristic curves are given by

x = Aet, y = Bet,

where A, B are arbitrary constants. Thus, an integral is y/x, x 6= 0, and for
a given C1-function the function u = H(x/y) is a solution of the differential
equation. If y/x = const., then u is constant. Suppose that H ′(s) > 0,
for example, then u defines right helicoids (german: Wendelflächen), see
Figure 2.3

Figure 2.3: Right helicoid (Museo Ideale Leonardo da Vinci, Italy)

3. Consider the differential equation

yux − xuy = 0.
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The associated characteristic system is

x′ = y, y′ = −x.

If follows
x′x + yy′ = 0,

or, equivalently,
d

dt
(x2 + y2) = 0,

which implies that x2 + y2 = const. along each characteristic. Thus, rota-
tionally symmetric surfaces defined by u = H(x2 + y2), where H ′ 6= 0, are
solutions of the differential equation.

4. The associated characteristic equations to

ayux + bxuy = 0,

where a, b are positive constants, are given by

x′ = ay, y′ = bx.

It follows bxx′ − ayy′ = 0, or equivalently,

d

dt
(bx2 − ay2) = 0.

Thus, solutions of the differential equation are u = H(bx2−ay2), which define
surfaces which have a hyperbola as the intersection with planes parallel to
the (x, y)-plane. Here is H(s) an arbitrary C1-function.

2.2 Quasilinear equations

Here we consider equation

a1(x, y, u)ux + a2(x, y, u)uy = a3(x, y, u). (2.4)

The inhomogeneous linear equation

a1(x, y)ux + a2(x, y)uy = a3(x, y)
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is a special case of (2.4).

One arrives at characteristic equations x′ = a1, y′ = a2, z′ = a3 from (2.4)
by the same arguments as in the case of homogeneous linear equations in two
variables. The additional equation z′ = a3 follows from

z′(τ) = p(λ)x′(τ) + q(λ)y′(τ)

= pa1 + qa2

= a3,

see also Section 2.3, where the general case of nonlinear equations in two
variables is considered.

2.2.1 A linearization method

We can transform the inhomogeneous equation (2.4) into a homogeneous
linear equation for an unknown function of three variables by the following
trick.

We are looking for a function ψ(x, y, u) such that the solution u = u(x, y)
of (2.4) is defined implicitely by ψ(x, y, u) = const. Assume there is such a
function ψ und let u be a solution of (2.4), then

ψx + ψuux = 0, ψy + ψuuy = 0.

Assume ψu 6= 0, then

ux = −ψx

ψu

, uy = −ψy

ψu

.

Then, it follows from (2.4) the linear homogeneous equation

a1(x, y, z)ψx + a2(x, y, z)ψy + a3(x, y, z)ψz = 0, (2.5)

where z := u.
We consider the associated system of characteristic equations

x′(t) = a1(x, y, z)

y′(t) = a2(x, y, z)

z′(t) = a3(x, y, z).

One arrives at this system by the same arguments as in the two dimen-
sional case above.
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Proposition 2.2. (i) Assume w ∈ C1, w = w(x, y, z), is an integral, that
is, it is constant along each fixed solution of (2.5), then ψ = w(x, y, z) is a
solution of (2.5).
(ii) The function z = u(x, y), implicitely defined through ψ(x, u, z) = const.,
is a solution of (2.4), provided that ψz 6= 0.
(iii) Let z = u(x, y) be a solution of (2.4) and let (x(t), y(t)) be a solution of

x′(t) = a1(x, y, u(x, y)), y′(t) = a2(x, y, u(x, y)),

then z(t) := u(x(t), y(t)) satisfies the third of the above characteristic equa-
tions.

Proof. Exercise.

2.2.2 Initial value problem of Cauchy

Consider again the quasilinear equation
(?) a1(x, y, u)ux + a2(x, y, u)uy = a3(x, y, u).

Let

Γ : x = x0(s), y = y0(s), z = z0(s), s1 ≤ s ≤ s2, −∞ < s1 < s2 < +∞,

be a regular curve in R
3 and denote by C the orthogonal projection of Γ onto

the (x, y)-plane, that is,

C : x = x0(s), y = y0(s).

Initial value problem of Cauchy: Find a C1-solution u = u(x, y) of (?)
such that u(x0(s), y0(s)) = z0(s), that is, we seek a surface S defined by
z = u(x, y) which contains the curve Γ.

Definition. The curve Γ is said to be noncharacteristic if

x′
0(s)a2(x0(s), y0(s)) − y′

0(s)a1(x0(s), y0(s)) 6= 0.

Remark. If x0(s), y0(s), z0(s) is a solution of the characteristic system,
then Γ is not noncharacteristic, it is by definition a characteristic curve.
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Figure 2.4: Cauchy initial value problem

Theorem 2.1. Assume a1, a2, a2 ∈ C1 in their arguments, the initial data
x0, y0, z0 ∈ C1[s1, s2] and Γ is noncharacteristic.

Then there is a neighbourhood of C such that there exists exactly one
solution u of the Cauchy initial value problem.

Proof. (i) Existence. Consider the following initial value problem for the
system of characteristic equations to (?):

x′(t) = a1(x, y, z)

y′(t) = a2(x, y, z)

z′(t) = a3(x, y, z)

with the initial conditions

x(s, 0) = x0(s)

y(s, 0) = y0(s)

z(s, 0) = z0(s).

Let x = x(s, t), y = y(s, t), z = z(s, t) be the solution, s1 ≤ s ≤ s2, |t| < η
for an η > 0. We will show that this set of strings sticked onto the curce
Γ, see Figure 2.4, defines a surface. To show this, we consider the inverse
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functions s = s(x, y), t = t(x, y) of x = x(s, t), y = y(s, t) and show that
z(s(x, y), t(x, y)) is a solution of the initial problem of Cauchy. The inverse
functions s and t exist in a neighbourhood of t = 0 since

det
∂(x, y)

∂(s, t)

∣∣∣
t=0

=

∣∣∣∣
xs xt

ys yt

∣∣∣∣
t=0

= x′
0(s)a2 − y′

0(s)a1 6= 0

since the initial curve Γ is noncharacteristic by assumption.
Set

u(x, y) := z(s(x, y), t(x, y)),

then u satisfies the initial condition since

u(x, y)|t=0 = z(s, 0) = z0(s).

The following calculation shows that u is also a solution of the differential
equation (?).

a1ux + a2uy = a1(zssx + zttx) + a2(zssy + ztty)

= zs(a1sx + a2sy) + zt(a1tx + a2ty)

= zs(sxxt + syyt) + zt(txxt + tyyt)

= a3

since 0 = st = sxxt + syyt and 1 = tt = txxt + tyyt.

(ii) Uniqueness. Suppose that v(x, y) is a second solution. Consider a point
(x′, y′) in a neighbourhood of the curve (x0(s), y(s)), s1+ε ≤ s ≤ s2−ε, ε > 0
small. The inverse parameters, see above, are s′ = s(x′, y′), t′ = t(x′, y′), see
Figure 2.5.

Let
A : x(t) := x(s′, t), y(t) := y(s′, t), z(t) := z(s′, t)

be the solution of the above initial value problem for the characteristic dif-
ferential equations with the initial data

x(s′, 0) = x0(s
′), y(s′, 0) = y0(s

′), z(s′, 0) = z0(s
′).

According to the above construction this curve is on the surface S defined
by u = u(x, y) and u(x′, y′) = z(s′, t′). Set

ψ(t) := v(x(t), y(t)) − z(t),
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Figure 2.5: Uniqueness proof

then

ψ′(t) = vxx
′ + vyy

′ − z′

= xxa1 + vya2 − a3 = 0

since v is a solution of the differential equation by assumption. Since v
satisfies the initial condition one has

ψ(0) = v(x(s′, 0), y(s′, 0)) − z(s′, 0) = 0.

Thus, ψ(t) ≡ 0, that is,

v(x(s′, t), y(s′, t)) − z(s′, t) = 0.

Set t = t′, then
v(x′, y′) − z(s′, t′) = 0,

which shows that v(x′, y′) = u(x′, y′) since z(s′, t′) = u(x′, y′). 2

Remark. In general, there is no uniqueness if the initial curve Γ is a char-
acteristic curve, see Figure 2.6 and an exercise.

Examples

1. Consider the Cauchy initial value problem

ux + uy = 0
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Figure 2.6: Multiple solutions

with the initial data

x0(s) = s, y0(s) = 1, z0(s) is a given C1-function.

These initial data are noncharacteristic since y′
0a1−x′

0a2 = −1. The solution
of the associated system of characteristic equations

x′(t) = 1, y′(t) = 1, u′(t) = 0

with the initial conditions

x(s, 0) = x0(s), y(s, 0) = y0(s), z(s, 0) = z0(s)

is given by

x = t + x0(s), y = t + y0(s), z = z0(s),

that is,

x = t + s, y = t + 1, z = z0(s).

It follows s = x− y + 1, t = y − 1 and that u = z0(x− y + 1) is the solution
of the Cauchy initial value problem.
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2. A problem from kinetics in chemistry. Consider for x ≥ 0, y ≥ 0 the
problem

ux + uy =
(
k0e

−k1x + k2

)
(1 − u)

with initial data

u(x, 0) = 0, x > 0, and u(0, y) = u0(y), y > 0.

Here the constants kj are positive, these constants define the velocity of the
reactions in consideration, and the function u0(y) is given. The variable x
is the time and y is the hight of a tube, for example, in which the chemical
reaction takes place, and u is the concentration of the chemical substance.

In contrast to our previous assumptions, the initial data are not in C1.
The projection C1 ∪ C2 of the initial curve onto the (x, y)-plane has a corner
at the origin, see Figure 2.7.

x

y
x=y

Ω

Ω
2

1

C

C

1

2

Figure 2.7: Domains to the chemical kinetics example

The associated system of characteristic equations is

x′(t) = 1, y′(t) = 1, z′(t) =
(
k0e

−k1x + k2

)
(1 − z).

It follows x = t + c1, y = t + c2 with constants cj. Thus, the projection
of the characteristic curves on the (x, y)-plane are straight lines parallel to
y = x. We will solve the initial value problems in the domains Ω1 and Ω2,
see Figure 2.7, separately.

(i) The initial value problem in Ω1. The initial data are

x0(s) = s, y0(s) = 0, z0(0) = 0, s ≥ 0.
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It follows

x = x(s, t) = t + s, y = y(s, t) = t.

Thus,

z′(t) = (k0e
−k1(t+s) + k2)(1 − z), z(0) = 0.

The solution of this initial value problem is given by

z(s, t) = 1 − exp

(
k0

k1

e−k1(s+t) − k2t −
k0

k1

e−k1s

)
.

Consequently,

u1(x, y) = 1 − exp

(
k0

k1

e−k1x − k2y − k0k1e
−k1(x−y)

)

is the solution of the Cauchy initial value problem in Ω1. If time x tends to
∞, we get the limit

lim
x→∞

u1(x, y) = 1 − e−k2y.

(ii) The initial value problem in Ω2. The initial data are here

x0(s) = 0, y0(s) = s, z0(0) = u0(s), s ≥ 0.

It follows

x = x(s, t) = t, y = y(s, t) = t + s.

Thus,

z′(t) = (k0e
−k1t + k2)(1 − z), z(0) = 0.

The solution of this initial value problem is given by

z(s, t) = 1 − (1 − u0(s)) exp

(
k0

k1

e−k1t − k2t −
k0

k1

)
.

Consequently,

u2(x, y) = 1 − (1 − u0(y − x)) exp

(
k0

k1

e−k1x − k2x − k0

k1

)

is the solution in Ω2.
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If x = y, then

u1(x, y) = 1 − exp

(
k0

k1

e−k1x − k2x − k0

k1

)

u2(x, y) = 1 − (1 − u0(0)) exp

(
k0

k1

e−k1x − k2x − k0

k1

)
.

If u0(0) > 0, then u1 < u2 if x = y, that is, there is a jump of the concentra-
tion of the substrate along its burning front defined by x = y.

The case if a solution of the equation is known

Here we will see that we get immediately a solution of the Cauchy initial
value problem if a solution of the homogeneous linear equation

a1(x, y)ux + a2(x, y)uy = 0

is known.
Let

x0(s), y0(s), z0(s), s1 < s < s2

be the initial data and let u = φ(x, y) be a solution of the differential equa-
tion. We assume that

φx(x0(s), y0(s))x
′
0(s) + φy(x0(s), y0(s))y

′
0(s) 6= 0

is satisfied. Set g(s) = φ(x0(s), y0(s)) and let s = h(g) be the inverse func-
tion.

The solution of the Cauchy initial problem is given by u0 (h(φ(x, y))).

This follows since a composition of a solution is a solution again, see an
exercise, and since

u0 (h(φ(x0(s), y0(s))) = u0(h(g)) = u0(s).

Example: Consider equation

ux + uy = 0

with initial data

x0(s) = s, y0(s) = 1, u0(s) is a given function.

A solution of the differential equation is φ(x, y) = x−y. Thus, φ((x0(s), y0(s)) =
s − 1 and u0(φ + 1) = u0(x − y + 1) is the solution of the problem.
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2.3 Nonlinear equations in two variables

Here we consider equation

F (x, y, z, p, q) = 0, (2.6)

where z = u(x, y), p = ux(x, y), q = uy(x, y) and F ∈ C2 is given such that
F 2

p + F 2
q 6= 0.

In contrast to the quasilinear case, this general nonlinear equation is
more complicated. Together with (2.6) we will consider the following system
of ordinary equations which follow from considerations below as necessary
conditions, in particular from the assumption that there is a solution of
(2.6).

x′(t) = Fp (2.7)

y′(t) = Fq (2.8)

z′(t) = pFp + qFq (2.9)

p′(t) = −Fx − Fup (2.10)

q′(t) = −Fy − Fuq. (2.11)

Definition. Equations (2.7)–(2.11) are said to be characteristic equations of
equation (2.6) and a solution

(x(t), y(t), z(t), p(t), q(t))

of the characteristic equations is called characteristic strip or Monge curve.
We will see, as in the quasilinear case, that the strips defined by the

characteristic equations build the solution surface of the Cauchy initial value
problem.

Let z = u(x, y) be a solution of the general nonlinear differential equa-
tion (2.6).

Let (x0, y0, z0) be fixed, then equation (2.6) defines a set of planes given by
(x0, y0, z0, p, q), that is, planes given by z = v(x, y) which contain the point
(x0, y0, z0) and for which vx = p, vy = q at (x0, y0). In the case of quasilinear
equations these set of planes is a boundle of planes which all contain a fixed
straight line, see Section 2.1. In the general case of this section the situation
is more complicated.
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Figure 2.8: Gaspard Monge (Panthéon, Paris)

Consider example
p2 + q2 = f(x, y, z), (2.12)

where f is a given positive function. Let E be a plane defined by z = v(x, y)
and which contains (x0, y0, z0). Then the normal on the plane E directed
downward is

N =
1√

1 + |∇v|2
(p, q,−1),

where p = vx(x0, y0), q = vy(x0, y0). It follows from (2.12) that the normal
N makes a constant angle with the z-axis, and the z-coordinate of N is
constant, see Figure 2.9.

Thus, the endpoints of the normals, fixed at (x0, y0, z0), define a circle
parallel to the (x, y)-plane, that is, there is a cone which is the envelope of
all these planes.

We assume that the general equation (2.6) defines such a Monge cone at
each point in R

3. Then we seek a surface S which touches at each point its
Monge cone, see Figure 2.10.

More precisely, we assume there exists, as in the above example, a one
parameter C1-family

p(λ) = p(λ; x, y, z), q(λ) = q(λ; x, y, z)
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Figure 2.9: Monge cone in an example

of solutions of (2.6). These (p(λ), q(λ)) define a family Π(λ) of planes.
Let

x(τ) = (x(τ), y(τ), z(τ))

be a curve on the surface S which touches at each point its Monge cone,
see Figure 2.11. That is, we assume that at each point of the surface S the
associated tangent plane coincides with a plane from the family Π(λ) at this
point.

Consider the tangential plane Tx0 of the surface S at x0 = (x(τ0), y(τ0), z(τ0)).
The straight line

l(σ) = x0 + σx′(τ0), −∞ < σ < ∞,

is an apothem (german: Mantellinie) of the cone by assumption and is con-
tained in the tangential plane Tx0 as the tangent of a curve on the surface S.
It is

x′(τ0) = l′(σ). (2.13)

The straight line l(σ) satisfies

l3(σ) − z0 = (l1(σ) − x0)p(λ0) + (l2(σ) − y0)q(λ0),
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Figure 2.10: Monge cones

since it is contained in the tangential plane Tx0 defined by the slope (p, q).
It follows

l′3(σ) = p(λ0)l
′
1(σ) + q(λ0)l

′
2(σ).

Together with (2.13) we obtain

z′(τ) = p(λ0)x
′(τ) + q(λ0)y

′(τ). (2.14)

The above straight line l is the limit of the intesection line of two neighbouring
planes which envelopes the Monge cone:

z − z0 = (x − x0)p(λ0) + (y − y0)q(λ0)

z − z0 = (x − x0)p(λ0 + h) + (y − y0)q(λ0 + h).

On the intersection one has

(x − x0)p(λ) + (y − y0)q(λ0) = (x − x0)p(λ0 + h) + (y − y0)q(λ0 + h).

Let h → 0, it follows

(x − x0)p
′(λ0) + (y − y0)q

′(λ0) = 0.
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Figure 2.11: Monge cones along a curve on the surface

Since x = l1(σ), y = l2(σ) in this limit position, we have

p′(λ0)l
′
1(σ) + q′(λ0)l

′
2(σ) = 0,

and it follows from (2.13) that

p′(λ0)x
′(τ) + q′(λ0)y

′(τ) = 0. (2.15)

From differential equation F (x0, y0, z0, p(λ), q(λ)) = 0 we see that

Fpp
′(λ) + Fqq

′(λ) = 0. (2.16)

Assume x′(τ0) 6= 0 and Fp 6= 0, then we obtain from (2.15), (2.16)

y′(τ0)

x′(τ0)
=

Fq

Fp

,

and from (2.14) (2.16) that

z′(τ0)

x′(τ0)
= p + q

Fq

Fp

.
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It follows, since τ0 was an arbitrary fixed parameter,

x′(τ) = (x′(τ), y′(τ), z′(τ))

=

(
x′(τ), x′(τ)

Fq

Fp

, x′(τ)

(
p + q

Fq

Fp

))

=
x′(τ)

Fp

(Fp, Fq, pFp + qFq).

That is, the tangential vector x′(τ) is proportional to (Fp, Fq, pFp +qFq). Set

a(τ) =
x′(τ)

Fp

,

where F = F (x(τ), y(τ), z(τ), p(λ(τ)), q(λ(τ))). Introducing the new param-
eter t by the inverse of τ = τ(t), where

t(τ) =

∫ τ

τ0

a(s) ds,

we obtain the characteristic equations (2.7)–(2.9). Here we denote x(τ(t))
by x(t) again. From the differential equation (2.6) and (2.7)–(2.9) we obtain
equations (2.10) and (2.11). Assume that the surface z = u(x, y) under
consideration belongs to the class C2, then

Fx + Fzp + Fppx + Fqpy = 0, (qx = py)

Fx + Fzp + x′(t)px + y′(t)py = 0

Fx + Fzp + p′(t) = 0

since p = p(x, y) = p(x(t), y(t)) on the curve x(t). Thus equation (2.10) of the
characteristic system is shown. Differentiating the differential equation(2.6)
with respect to y, we get finally equation (2.11).

Remark. In the previous quasilinear case

F (x, y, z, p, q) = a1(x, y, z)p + a2(x, y, z)q − a3(x, y, z)

the first three characteristic equations are the same:

x′(t) = a1(x, y, z), y′(t) = a2(x, y, z), z′(t) = a3(x, y, z).
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The point is that the right hand sides are independent on p or q. It follows
from Theorem 2.1 that there exists a solution of the Cauchy initial value
problem provided the initial data are noncharacteristic. That is, we do not
need the other remaining two characteristic equations.

The other two equations (2.10) and (2.11) are satisfied in this quasilin-
ear case automatically if there is a solution of the equation, see the above
derivation of these equations.

The geometric meaning of the first three characteristic differential equa-
tions (2.7)–(2.11) is the following one. Each point of the curve
A : (x(t), y(t), z(t)) corresponds a tangential plane with the normal direc-
tion (−p,−q, 1) such that

z′(t) = p(t)x′(t) + q(t)y′(t).

This equation is called strip condition. On the other hand, let z = u(x, y)
define a surface, then z(t) := u(x(t), y(t)) satisfies the strip condition, where
p = ux and q = uy, that is, the ”scales” defined by the normals fit together.

Proposition 2.3. F (x, y, z, p, q) is an integral, that is, it is constant along
each characteristic curve.

Proof.

d

dt
F (x(t), y(t), z(t), p(t), q(t)) = Fxx

′ + Fyy
′ + Fzz

′ + Fpp
′ + Fqq

′

= FxFp + FyFq + pFzFp + qFzFq

−Fpfx − FpFzp − FqFy − FqFzq

= 0.

Corollary. Assume F (x0, y0, z0, p0, q0) = 0, then F = 0 along characteristc
curves with the initial data (x0, y0, z0, p0, q0).

Proposition 2.4. Let z = u(x, y), u ∈ C2, be a solution of the nonlinear
equation (2.6). Set

z0 = u(x0, y0, ) p0 = ux(x0, y0), q0 = uy(x0, y0).



48 CHAPTER 2. EQUATIONS OF FIRST ORDER

Then the associated characteristic strip is in the surface S defined by z =
u(x, y). That is,

z(t) = u(x(t), y(t))

p(t) = ux(x(t), y(t))

q(t) = uy(x(t), y(t)),

where (x(t), y(t), z(t), p(t), q(t)) is the solution of the characteristic system
(2.7)–(2.11) with initial data (x0, y0, z0, p0, q0)

Proof. Consider the initial value problem

x′(t) = Fp(x, y, u(x, y), ux(x, y), uy(x, y))

y′(t) = Fq(x, y, u(x, y), ux(x, y), uy(x, y))

with the initial data x(0) = x0, y(0) = y0. We will show that

(x(t), y(t), u(x(t), y(t)), ux(x(t), y(t)), uy(x(t), y(t)))

is a solution of the characteristic system. We recall that the solution exists
and is uniquely determined.

Set z(t) = u(x(t), y(t)), then (x(t), y(t), z(t)) ⊂ S, and

z′(t) = uxx
′(t) + uyy

′(t) = uxFp + uyFq.

Set p(t) = ux(x(t), y(t)), q(t) = uy(x(t), y(t)), then

p′(t) = uxxFp + uxyFq

q′(t) = uyxFp + uyyFq.

Finally, from differential equation F (x, y, u(x, y), ux(x, y), uy(x, y)) = 0 it
follows

p′(t) = −Fx − Fup

q′(t) = −Fy − Fuq.

2
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2.3.1 Initial value problem of Cauchy

Let

x = x0(s), y = y0(s), z = z0(s), p = p0(s), q = q0(s), s1 < s < s2, (2.17)

be a given initial strip such that the strip condition

z′0(s) = p0(s)x
′
0(s) + q0(s)y

′
0(s) (2.18)

is satisfied. Moreover, we assume that the initial strip satisfies the nonlinear
equation, that is,

F (x0(s), y0(s), z0(s), p0(s), q0(s)) = 0. (2.19)

Initial value problem of Cauchy: Find a C2-solution z = u(x, y) of
F (x, y, z, p, q) = 0 such that the surface S defined by z = u(x, y) containes
the above initial strip.

Similar to the quasilinear case we will show that the set of strips defined by
the characteristic system which are sticked at the initial strip, see Figure 2.12,
fit together and define the surface for which we are looking at.

Definition. A strip (x(τ), y(τ), z(τ), p(τ), q(τ)), τ1 < τ < τ2 is said to be
noncharacteristic if

x′(τ)Fq(x(τ), y(τ), z(τ), p(τ), q(τ))− y′(τ)Fp(x(τ), y(τ), z(τ), p(τ), q(τ)) 6= 0.

Theorem 2.2. For a given noncharacteristic initial strip (2.17), x0, y0, z0 ∈
C2 and p0, q0 ∈ C1 which satisfies the strip condition (2.18) and the differen-
tial equation (2.19) exists exactly one solution z = u(x, y) of the Cauchy ini-
tial value problem in a neighbourhood of the initial curve (x0(s), y0(s), z0(s)).
That is, z = u(x, y) is the solution of the differential equation (2.6) and
u(x0(s), y0(s)) = z0(s), ux(x0(s), y0(s)) = p0(s), uy(x0(s), y0(s)) = q0(s).

Proof. Consider the system (2.7)–(2.11) with the initial data

x(s, 0) = x0(s), y(s, 0) = y0(s), z(s, 0) = z0(s), p(s, 0) = p0(s), q(s, 0) = q0(s).
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y
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t=0

t>0

Figure 2.12: Construction of the solution

We will show that the surface defined by x = x(s, t), y(s, t) is the surface
defined by z = u(x, y), where u is the solution of the Cauchy initial value
problem. It turns out that u(x, y) = z(s(x, y), t(x, y)), where s = s(x, y),
t = t(x, y) is the inverse of x = x(s, t), y = y(s, t) in a neigbourhood of t = 0.
This inverse exists since the initial strip is noncharacteristic by assumption:

det
∂(x, y)

∂(s, t)

∣∣
t=0

= x0Fq − y0Fq 6= 0.

Set
P (x, y) = p(s(x, y), t(x, y)), Q(x, y) = q(s(x, y), t(x, y)).

From Proposition 2.3 and Proposition 2.4 it follows F (x, y, u, P,Q) = 0. We
will show that P (x, y) = ux(x, y) and Q(x, y) = uy(x, y). To see this, we
consider the function

h(s, t) = zs − pxs − qys.

One has
h(s, 0) = z′0(s) − p0(s)x

′
0(s) − q0(s)y

′
0(s) = 0

since the initial strip satisfies the strip condition by assumption. In the fol-
lowing we will see that for fixed s the function h satisfies a linear homogeneous
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ordininary differential equation of first order. Consequently, h(s, t) = 0 in a
neighbourhood of t = 0. That is, the strip condition is also satisfied along
strips transversally to the characteristic strips, see Figure 2.18. That is, the
set of ”scales” fit together and define a surface like the scales of a fish.

From the definition of h(s, t) and the characteristic equations it follows

ht(s, t) = zst − ptxs − qtys − pxst − qyst

=
∂

∂s
(zt − pxt − qyt) + psxt + qsyt − qtys − ptxs

= (pxs + qys)Fz + Fxxs + Fyzs + Fpps + Fqqs.

Since F (x(s, t), y(s, t), z(s, t), p(s, t), q(s, t)) = 0, it follows after differentia-
tion of this equation with respect to s the differential equation

ht = −Fzh.

Hence h(s, t) ≡ 0, since h(s, 0) = 0.

Thus, we have

zs = pxs + qys

zt = pxt + qyt

zs = uxxs + uyys

zt = uxyt + uyyt.

The first equation was shown above, the second is a characteristic equation
and the last two follow from z(s, t) = u(x(s, t), y(s, t)). This system implies

(P − ux)xs + (Q − uy)ys = 0

(P − ux)xt + (Q − uy)yt = 0.

It follows P = ux and Q = uy.

The initial conditions

u(x(s, 0), y(s, 0)) = z0(s)

ux(x(s, 0), y(s, 0)) = p0(s)

uy(x(s, 0), y(s, 0)) = q0(s)
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are satisfied since

u(x(s, t), y(s, t)) = z(s(x, y), t(x, y)) = z(s, t)

ux(x(s, t), y(s, t)) = p(s(x, y), t(x, y)) = p(s, t)

uy(x(s, t), y(s, t)) = q(s(x, y), t(x, y)) = q(s, t).

The uniqueness follows as in the proof of Theorem 2.1. 2

Example. A differential equation which occurs in the geometrical optic is

u2
x + u2

y = n(x, y),

where the positive function n(x, y) is the index of refraction. The level sets
defined by u(x, y) = const. are called wave fronts. The characteristic curves
(x(t), y(t)) are the rays of light. If n is a constant, then the rays of light are
straight lines. In R

3 the equation is

u2
x + u2

y + u2
z = n(x, y, z).

Thus we have to extend the previous theory from R
2 to R

n, n ≥ 3.

2.4 Nonlinear equations in R
n

Here we consider the nonlinear differential equation

F (x, z, p) = 0, (2.20)

where
x = (x1, . . . , xn), z = u(x) : Ω ⊂ R

n 7→ R, p = ∇u.

The following system of 2n + 1 ordinary differential equations is said to be
characteristic system.

x′(t) = ∇pF

z′(t) = p · ∇pF

p′(t) = −∇xF − Fzp.

Let
x0(s) = (x01, . . . , x0n), s = (s1, . . . , sn−1)
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be a given regular (n-1)-dimensional C2-hypersurface in R
n, that is, we as-

sume

rank
∂x0(s)

∂s
= n − 1.

Here is s ∈ D a parameter from a (n − 1)-dimensionl parameter domain.
For example, x = x0(s) defines in the three dimensional case a regular

surface in R
3.

Assume
z0(s) : D 7→ R, p0(s) = (p01(s), . . . , p0n(s))

are given sufficiently regular functions.
The (2n + 1)-vector

(x0(s), z0(s), p0(s))

is said to be initial strip manifold and the condition

∂z0

∂sl

=
n−1∑

i=1

p0i(s)
∂x0i

∂sl

,

l = 1, . . . , n − 1, is called strip condition.
The initial strip manifold is said to be noncharacteristic if

det




Fp1 Fp2 · · · Fpn

∂x01

∂s1

∂x02

∂s1
· · · ∂x0n

∂s1

. . . . . . . . . . . . . . . . . . . . . . .
∂x01

∂sn−1

∂x02

∂sn−1
· · · ∂x0n

∂sn−1


 6= 0,

where the argument of Fpj
is the initial strip manifold.

Initial value problem of Cauchy. Seek a solution z = u(x) of differential
equation (2.20) such that the initial manifold is a subset of {(x, u(x),∇u(x)) :
x ∈ Ω}.

As in the two dimensional case we have under additional regularity as-
sumptions

Theorem 2.3. Suppose the initial strip manifold is not characteristic and
satisfies differential equation (2.20), that is, F (x0(s), z0(s), p0(s)) = 0. Then
there is a neighbourhood of the initial manifold (x0(s), z0(s)) such that there
exists a unique solution of the Cauchy initial value problem.
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Sketch of proof. Let

x = x(s, t), z = z(s, t), p = p(s, t)

be the solution of the characteristic system and let

s = s(x), t = t(x)

be the inverse of x = x(s, t) which exists in a neighbourhood of t = 0. Then,
it turns out that

z = u(x) := z(s1(x1, . . . , xn), . . . , sn−1(x1, . . . , xn), t(x1, . . . , xn))

is the solution of the problem.

2.5 Hamilton-Jacobi theory

The nonlinear equation (2.20) of previous section in one more dimension is

F (x1, . . . , xn, xn+1, z, p1, . . . , pn, pn+1) = 0.

The content of the Hamilton1-Jacobi2 theory is the theory of the special case

F ≡ pn+1 + H(x1, . . . , xn, xn+1, p1, . . . , pn) = 0, (2.21)

that is, the equation is linear in pn+1 and does not depend explicitely on z.

Remark. Formally, one can write equation (2.20)

F (x1, . . . , xn, u, ux1 , . . . , uxn
) = 0

as an equation of type (2.21). Set xn+1 = u and seek u implicitely from

φ(x1, . . . , xn, xn+1) = const.,

where φ is a function which is defined by a differential equation.

1Hamilton, William Rowan, 1805–1865
2Jacobi, Carl Gustav, 1805–1851
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Assume φxn+1 6= 0, then

0 = F (x1, . . . , xn, u, ux1 , . . . , uxn
)

= F (x1, . . . , xn, xn+1,−
φx1

φxn+1

, . . . ,− φxn

φxn+1

)

= : G(x1, . . . , xn+1, φ1, . . . , φxn+1).

Suppose that Gφxn+1
6= 0, then

φxn+1 = H(x1, . . . , xn, xn+1, φx1 , . . . , φxn+1).

The associated characteristic equations to (2.21) are

x′
n+1(τ) = Fpn+1 = 1

x′
k(τ) = Fpk

= Hpk
, k = 1, . . . , n

z′(τ) =
n+1∑

l=1

plFpl
=

n∑

l=1

plHpl
+ pn+1

=
n∑

l=1

plHpl
− H

p′n+1(τ) = −Fxn+1 − Fzpn+1

= −Fxn+1

p′k(τ) = −Fxk
− Fzpk

= −Fxk
, k = 1, . . . , n.

Set t := xn+1, then we can write partial differential equation (2.21) as

ut + H(x, t,∇xu) = 0 (2.22)

and 2n of the characteristic equations are

x′(t) = ∇pH(x, t, p) (2.23)

p′(t) = −∇xH(x, t, p). (2.24)

Here is
x = (x1, . . . , xn), p = (p1, . . . , pn).
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Let x(t), p(t) be a solution of (2.23) and (2.24), then it follows p′n+1(t) and
z′(t) from the characteristic equations

p′n+1(t) = −Ht

z′(t) = p · ∇pH − H.

Definition. The function H(x, t, p) is called Hamilton function, equation (2.21)
Hamilton-Jacobi equation and the system (2.23), (2.24) canonical system to
H.

There is an interesting interplay between the Hamilton-Jacobi equation
and the canonical system. According to the previous theory we can construct
a solution of the Hamilton-Jacobi equation by using solutions of the canonical
system. On the other hand, one obtains from solutions of the Hamilton-
Jacobi equation also solutions of the canonical system of ordinary differential
equations.

Definition. A solution φ(a; x, t) of the Hamilton-Jacobi equation, where
a = (a1, . . . , an) is an n-tupel of real parameters, is called a complete integral
of the Hamilton-Jacobi equation if

det(φxial
)n
i,l=1 6= 0.

Remark. If u is a solution of the Hamilton-Jacobi equation, then also u +
const.

Theorem 2.4 (Jacobi). Assume

u = φ(a; x, t) + c, c = const., φ ∈ C2 in its arguments,

is a complete integral. Then one obtaines by solving of

bi = φai
(a; x, t), bi i = 1, . . . , n, are given real constants,

with respect to xl = xl(a, b, t) and then by setting

pk = φxk
(a; x(a, b; t), t)

a 2n-parameter family of solutions of the canonical system.
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Proof. Let

xl(a, b; t), l = 1, . . . , n

be the solution of the above system. The solution exists since φ is a complete
integral by assumption. Set

pk(a, b; t) = φxk
(a; x(a, b; t), t), k = 1, . . . , n.

We will show that x and p solves the canonical system. Differentiating φai
=

bi with respect to t and the Hamilton-Jacobi equation φt + H(x, t,∇xφ) = 0
with respect to ai, we obtain for i = 1, . . . , n

φtai
+

n∑

k=1

φxkai

∂xk

∂t
= 0

φtai
+

n∑

k=1

φxkai
Hpk = 0.

Since φ is a complete integral it follows for k = 1, . . . , n

∂xk

∂t
= Hpk

.

Along a trajectory, that is, where a, b are fixed, it is ∂xk

∂t
= x′

k(t). Thus

x′
k(t) = Hpk

.

Now we differentiate pi(a, b; t) with respect to t and φt + H(x, t,∇xφ) = 0
with respect to xi, and obtain

p′i(t) = φxit +
n∑

k=1

φxixk
x′

k(t)

0 = φxit +
n∑

k=1

φxixk
Hpk

+ Hxi

0 = φxit +
n∑

k=1

φxixk
x′

k(t) + Hxi

It follows finally p′i(t) = −Hxi
. 2
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Example: Kepler problem

The motion of a mass point in a central field takes place in a plane, say the
(x, y)-plane, see Figure 2.13, and satisfies the system of ordinary differential
equations of second order

x′′(t) = Ux, y′′(t) = Uy,

where

U(x, y) =
k2

√
x2 + y2

.

Here we assume that k2 is a positive constant and that the mass point is
attracted of the origin. In the case that it is pushed one has to replace U by
−U . See Landau and Lifschitz [9], Vol 1, for example, for the related physics.

x

y

(x(t),y(t))

(U  ,U  )yx

θ

Figure 2.13: Motion in a central field

Set

p = x′, q = y′

and

H =
1

2
(p2 + q2) − U(x, y),

then

x′(t) = Hp, y′(t) = Hq

p′(t) = −Hx, q′(t) = −Hy.
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The associated Hamilton-Jacobi equation is

φt +
1

2
(φ2

x + φ2
y) =

k2

√
x2 + y2

.

which is in polar coordines (r, θ)

φt +
1

2
(φ2

r +
1

r2
φ2

θ) =
k2

r
. (2.25)

Now, we will seek a complete integral of (2.25) by making the ansatz

φt = −α = const. φθ = −β = const. (2.26)

and obtain from (2.25) that

φ = ±
∫ r

r0

√
2α +

2k2

ρ
− β2

ρ2
dρ + c(t, θ).

From ansatz (2.26) it follows

c(t, θ) = −αt − βθ.

Therefore we have a two parameter family of solutions

φ = φ(α, β; θ, r, t)

of the Hamilton-Jacobi equation. This solution is a complete integral (exer-
cise). According to the theorem of Jacobi set

φα = −t0, φβ = −θ0.

Then

t − t0 = −
∫ r

r0

dρ√
2α + 2k2

ρ
− β2

ρ2

.

The inverse function r = r(t), r(0) = r0, is the r-coordinate depending on
time t, and

θ − θ0 = β

∫ r

r0

dρ

ρ2

√
2α + 2k2

ρ
− β2

ρ2

.
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Substitution τ = ρ−1 yields

θ − θ0 = −β

∫ 1/r

1/r0

dτ√
2α + 2k2τ − β2τ 2

= − arcsin

(
β2

k2
1
r
− 1√

1 + 2αβ2

k4

)
+ arcsin

(
β2

k2
1
r0
− 1

√
1 + 2αβ2

k4

)
.

Set

θ1 = θ0 + arcsin

(
β2

k2
1
r0
− 1

√
1 + 2αβ2

k4

)

and

p =
β2

k2
, ε2 =

√
1 +

2αβ2

k4
,

then

θ − θ1 = − arcsin

( p
r
− 1

ε2

)
.

It follows
r = r(θ) =

p

1 − ε2 sin(θ − θ1)
,

which is the polar equation of conic sections. It defines an ellipse if 0 ≤ ε < 1,
a parabola if ε = 1 and a hyperbola if ε > 1, see Figure 2.14 for the case of
an ellipse, where the origin of the coordinate system is one of the focal points
of the ellipse.

For another applicaton of the Jacobi theorem see Courant and Hilbert [4],
Vol. 2, pp. 94, where geodedics on an ellipsoid are studied.
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Figure 2.14: The case of an ellipse

2.6 Exercises

1. Suppose u : R
2 7→ R is a solution of

a(x, y)ux + b(x, y)uy = 0.

Show that for arbitrary H ∈ C1 also H(u) is a solution.

2. Find a solution u 6≡ const. of

ux + uy = 0

such that

graph(u) := {(x, y, z) ∈ R
3 : z = u(x, y), (x, y) ∈ R

2}

contains the straight line (0, 0, 1) + s(1, 1, 0), s ∈ R.

3. Let φ(x, y) be a solution of

a1(x, y)ux + a2(x, y)uy = 0 .

Prove that level curves SC := {(x, y) : φ(x, y) = C = const.} are
characteristic curves, provided that ∇φ 6= 0 and (a1, a2) 6= (0, 0).
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4. Prove Proposition 2.2.

5. Find two different solutions of the initial value problem

ux + uy = 1,

where the initial data are x0(s) = s, y0(s) = s, z0(s) = s.

Hint. (x0, y0) is a characteristic curve.

6. Solve the initial value problem

xux + yuy = u

with initial data x0(s) = s, y0(s) = 1, z0(s), where z0 is given.

7. Solve the initial value problem

−xux + yuy = xu2,

x0(s) = s, y0(s) = 1, z0(s) = e−s.

8. Solve the initial value problem

uux + uy = 1,

x0(s) = s, y0(s) = s, z0(s) = s/2 if 0 < s < 1.

9. Solve the initial value problem u2
x + u2

y = 1 + x with given initial data
x0(s) = 0, y0(s) = s, u0(s) = 1, p0(s) = 1, q0(s) = 0, −∞ < s < ∞.

10. Find the solution Φ(x, y) of

(x − y)ux + 2yuy = 3x ,

such that the surface defined by z = Φ(x, y) contains the curve

C : x0(s) = s, y0(s) = 1, z0(s) = 0, s ∈ R.

11. Solve the following initial problem of chemical kinetics.

ux + uy =
(
k0e

−k1x + k2

)
(1 − u)2, x > 0, y > 0

with the initial data u(x, 0) = 0, u(0, y) = u0(y), where u0, 0 < u0 < 1,
is given.
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12. Solve

ux1 + ux2 = 0

u(x1, 0) = g(x1)

in Ω1 = {(x1, x2) ∈ R
2 : x1 > x2} and in Ω2 = {(x1, x2) ∈ R

2 : x1 <
x2}, where

g(x1) =

{
ul : x1 < 0
ur : x1 > 0

with constants ul 6= ur.

Remark. Such a problem with discontinuous initial data is called Rie-
mann’s problem.

13. Determine the opening angle of the Monge cone, that is, the angle
between the axis and the apothem (german: Mantellinie) of the cone,
for equation

u2
x + u2

y = f(x, y, u),

where f > 0.

14. Prove: F (x, y, u, p, q) is an integral, that is, F (x, y, u, p, q) is constant
along each characteristic curve (x(t), y(t), z(t), p(t), q(t)).

15. Solve the initial value problem

u2
x + u2

y = 1,

where x0(θ) = a cos θ, y0(θ) = a sin θ, z0(θ) = 1, p0(θ) = cos θ, q0(θ) =
sin θ if 0 ≤ θ < 2π, a = const. > 0.

16. Show that the integral φ(α, β; θ, r, t), see the Kepler problem, is a com-
plete integral.

17. a) Show that S =
√

α x +
√

1 − α y + β , α, β ∈ R, 0 < α < 1, is a
complete integral of Sx −

√
1 − S2

y = 0.
b) Find the envelope of this family of solutions.

18. Determine the length of the half axis of the ellipse

r =
p

1 − ε2 sin(θ − θ0)
, 0 ≤ ε < 1.
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19. Find the Hamilton function H(x, p) of the Hamilton-Jacobi-Bellman
differential equation if h = 0 and f = Ax + Bα, where A, B are
constant and real matrices, A : R

m 7→ R
n, B is an orthogonal real

n × n-Matrix and p ∈ R
n is given. The set of admissible controls is

given by

U = {α ∈ R
n :

n∑

i=1

α2
i ≤ 1} .

Remark. The Hamilton-Jacobi-Bellman equation is formally the Hamilton-
Jacobi equation ut + H(x,∇u) = 0, where the Hamilton function is
defined by

H(x, p) := min
α∈U

(f(x, α) · p + h(x, α)) ,

f(x, α) and h(x, α) are given. See for example, Evans[5], Chapter 10.



Chapter 3

Classification

Different types of problems in physics, for example, correspond different types
of partial differential equations. The methods how to solve these equations
differ from type to type.

The classification of differential equations follows from one single ques-
tion: Can we calculate formally the solution if sufficiently many initial data
are given? Consider the initial problem for an ordinary differential equation
y′(x) = f(x, y(x)), y(x0) = y0. Then one can determine formally the solu-
tion, provided the function f(x, y) is sufficiently regular. The solution of the
initial value problem is formally given by a power series. This formal solution
is a solution of the problem if f(x, y) is real analytic according to a theorem
of Cauchy. In the case of partial differential equations the related theorem is
the Theorem of Cauchy-Kowalevski. Even in the case of ordinary differential
equations the situation is more complicated if y′ is implicitely defined, that
is, the differential equation is F (x, y(x), y′(x)) = 0 for a given function F .

3.1 Linear equations of second order

The general nonlinear partial differential equation of second order is

F (x, u,Du,D2u) = 0,

where x ∈ R
n, u : Ω ⊂ R

n 7→ R, Du ≡ ∇u and D2u stands for all second
derivatives. The function F is given and sufficiently regular with respect to
its 2n + 1 + n2 arguments.

65
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In this section we consider the case

n∑

i,k=1

aik(x)uxixk
+ f(x, u,∇u) = 0. (3.1)

The equation is linear if

f =
n∑

i=1

bi(x)uxi
+ c(x)u + d(x).

Concerning the classification the main part

n∑

i,k=1

aik(x)uxixk

plays the essential role. Suppose u ∈ C2, then we can assume, without
restriction of generality, that aik = aki, since

n∑

i,k=1

aik(x)uxixk
=

n∑

i,k=1

a?
ik(x)uxixk

,

where

a?
ik =

1

2
(aik + aki).

Consider a hypersurface S in R
n defined implicitely by χ(x) = 0, ∇χ 6= 0,

see Figure 3.1
Assume u and ∇u are given on S.

Problem: Can we calculate all other derivatives of u on S by using differ-
ential equation (3.1) and the given data?

We will find an answer if we map S onto a hyperplane S0 by a mapping

λn = χ(x1, . . . , xn)

λi = λi(x1, . . . , xn), i = 1, . . . , n − 1,

for functions λi such that

det
∂(λ1, . . . , λn)

∂(x1, . . . , xn)
6= 0
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x

Sx

x3

1

2

Figure 3.1: Initial manifold S

in Ω ⊂ R
n. It is assumed that χ and λi are sufficiently regular. Such a

mapping λ = λ(x) exists, see an exercise.

The above transformation maps S onto a subset of the hyperplane defined
by λn = 0, see Figure 3.2

We will write the differential equation in these new coordinates. Here we
use Einstein’s convention, that is, we add terms with repeating indices. Since

u(x) = u(x(λ)) =: v(λ) = v(λ(x)),

where x = (x1, . . . , xn) and λ = (λ1, . . . , λn), we get

uxj
= vλi

∂λi

∂xj

, (3.2)

uxjxk
= vλiλl

∂λi

∂xj

∂λl

∂xk

+ vλi

∂2λi

∂xj∂xk

.

Thus, differential equation (3.1) in the new coordinates is given by

ajk(x)
∂λi

∂xj

∂λl

∂xk

vλiλl
+ terms known on S0 = 0.
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3

1

2

λ

λ

λ

S
0

Figure 3.2: Transformed flat manifold S0

Since vλk
(λ1, . . . , λn−1, 0), k = 1, . . . , n are known, see (3.2), it follows that

vλkλl
, l = 1, . . . , n−1 are known on S0. That is, we know all second derivatives

vλiλj
on S0 with the only exception of vλnλn

.
We recall that, provided v is sufficiently regular,

vλkλl
(λ1, . . . , λn−1, 0)

is the limit of

vλk
(λ1, . . . , λl + h, λl+1, . . . , λn−1, 0) − vλk

(λ1, . . . , λl, λl+1, . . . , λn−1, 0)

h

as h → 0.
Thus, the differential equation is now

ajk(x)
∂λn

∂xj

∂λn

∂xk

vλnλn
= terms known on S0.

It follows that we can calculate vλnλn
if

n∑

i,j=1

aij(x)χxi
χxj

6= 0 (3.3)
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on S. This is a condition for the given equation and for the given surface S.

Definition. Differential equation

n∑

i,j=1

aij(x)χxi
χxj

= 0

is called characteristic differential equation associated to the given differential
equation (3.1).

If χ, ∇χ 6= 0, is a solution of the characteristic differential equation, then
the surface defined by χ = 0 is called characteristic surface.

Remark. The condition (3.3) is satisfied for each χ with ∇χ 6= 0 if the
quadratic matrix (aij(x)) is positive or negative definite for each x ∈ Ω,
which is aquivalent to the property that all eigenvalues are different from
zero and from the same sign. This follows since there is a λ(x) > 0 such
that, in the case that (aij) is poitive definite,

aij(x)ζiζj ≥ λ(x)|ζ|2

for all ζ ∈ R
n. Here and in the following we assume that the matrix (aij) is

real and symmetric.

The characterization of differential equation (3.1) follows from the signs of
the eigenvalues of (aij(x)).

Definition. Differential equation (3.1) is said to be of type (α, β, γ) at x ∈ Ω
if α eigenvalues of (aij)(x) are positive, β eigenvalues are negative and γ
eigenvalues are zero (α + β + γ = n).
In particular, equation is called
elliptic if it is of type (n, 0, 0) or of type (0, n, 0), that is all eigenvalues are
different from zero and have the same sign.
parabolic if it is of type (n−1, 0, 1) or of type (0, n−1, 1), that is one eigenvalue
is zero and all the others are different from zero and have the same sign.
hyperbolic if it is of type (n − 1, 1, 0) or of type (1, n − 1, 0), that is, all
eigenvalues are different from zero and one eigenvalue has another sign than
all the others.

Remarks:
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1. According to this definition there are other types aside from elliptic,
parabolic or hyperbolic equations.

2. The classification depends in general on x ∈ Ω. An example is the Tricomi
equation, which appears in the theory of transsonic flows,

yuxx + uyy = 0.

This equation is elliptic if y > 0, parabolic if y = 0 and hyperbolic for y < 0.

Examples:

1. The Laplace equation in R
3 is 4u = 0, where

4u := uxx + uyy + uzz.

This equation is elliptic. That is, for each mannifold S given by {(x, y, z) :
χ(x, y, z) = 0}, where χ is an arbitrary sufficiently regular function such that
∇χ 6= 0, all derivatives of u are known on S, provided u and ∇u are known
on S.

2. The wave equation utt = uxx + uyy + uzz, where u = u(t, x, y, z), is
hyperbolic. Such type describes oscillations of mechanical structures, for
example.

3. The heat equation ut = uxx+uyy +uzz, where u = u(t, x, y, z), is parabolic.
It describes, for example, the propagation of heat in a domain.

4. Consider the case that the (real) coefficients aij in equation (3.1) are
constant. We recall that the matrix A = (aij) is symmetric, that is AT = A.
In this case, the transformation to principle axis leads to a normal form from
which the classification of the equation is obviously. Let U be the associated
orthogonal matrix, that is,

UT AU =




λ1 0 · · · 0
0 λ2 · · · 0
. . . . . . . . . . . . . . .
0 0 · · · λn


 .

Here is U = (z1, . . . , zn), where zl, l = 1, . . . , n, is an orthonormal system of
eigenvectors to the eigenvalues λl.
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Set y = UT x and v(y) = u(Uy), then

n∑

i,j=1

aijuxixj
=

n∑

i=1

λivyiyj
. (3.4)

3.1.1 Normal form in two variables

Consider differential equation

a(x, y)uxx + 2b(x, y)uxy + c(x, y)uyy + terms of lower order = 0 (3.5)

in Ω ⊂ R
2. The associated characteristic differential equation is

aχ2
x + 2bχxχy + cχ2

y = 0. (3.6)

We show that an appropriate coordinate transformation will simplify equa-
tion (3.5), sometimes in such a way that we can solve it explicitely.

Assume there is a solution z = φ(x, y) of (3.6). Consider the level sets
{(x, y) : φ(x, y) = const.} and assume that φy 6= 0 at a point (x0, y0) of the
level set. Consequently, there is a function y(x) defined in a neighbourhood
of x0 such that φ(x, y(x)) = const.. It follows

y′(x) = −φx

φy

,

which implies, see the characteristic equation (3.6),

ay′2 − 2by′ + c = 0. (3.7)

That is, provided that a 6= 0, we can calculate µ := y′ from the (known)
coefficients a, b and c:

µ1,2 =
1

a

(
b ±

√
b2 − ac

)
. (3.8)

These solutions are real if and only of ac − b2 ≤ 0.
Equation (3.5) is hyperbolic if ac − b2 < 0, parabolic if ac − b2 = 0 and

elliptic if ac− b2 > 0. This follows from an easy discussion of the eigenvalues
of the matrix (

a b
b c

)
,

see an exercise.
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Normal form of a hyperbolic equation

Let φ and ψ are solutions of the characteristic equation (3.6) such that

y′
1 ≡ µ1 = −φx

φy

y′
2 ≡ µ2 = −ψx

ψy

,

where µ1 and µ2 are given by (3.8). Thus φ and ψ are solutions of the linear
homogeneous equations of first order

φx + µ1(x, y)φy = 0 (3.9)

ψx + µ2(x, y)ψy = 0. (3.10)

Consider solutions φ(x, y), ψ(x, y) such that ∇φ 6= 0 and ∇ψ 6= 0, see an
exercise for the existence of such solutions.

Consider two families of level sets defined by φ(x, y) = α and ψ(x, y) = β,
see Figure 3.3.

y

x

(x,y)=

(x,y)=

(x,y)=

(x,y)=

ϕ α

αϕ

βψ

ψ β

1

2

1

2

Figure 3.3: Level sets

These level sets are characteristic curves of the partial differential equa-
tions (3.9) and (3.10), respectively, see an exercise of the previous chapter.

Lemma. (i) Curves from different families can not touch each other.

(ii) φxψy − φyψx 6= 0.



3.1. LINEAR EQUATIONS OF SECOND ORDER 73

Proof. (i):

y′
2 − y′

1 ≡ µ2 − µ1 = −2

a

√
b2 − ac 6= 0.

(ii):

µ2 − µ1 =
φx

φy

− ψx

ψy

.

2

Proposition. The mapping ξ = φ(x, y), η = ψ(x, y) transforms equa-
tion (3.5) into

vξη = lower order terms, (3.11)

where v(ξ, η) = u(x(ξ, η), y(ξ, η)).

Proof. The proof follows from a straightforward calculation.

ux = vξφx + vηψx

uy = vξφy + vηψy

uxx = vξξφ
2
x + 2vξηφxψx + vηηψ

2
x + lower order terms

uxy = vξξφxφy + vξη(φxψy + φyψx) + vηηψxψy + lower order terms

uyy = vξξφ
2
y + 2vξηφyψy + vηηψ

2
y + lower order terms.

It follows

auxx + 2buxy + cuyy = αvξξ + 2βvξη + γvηη + l.o.t.,

where

α = aφ2
x + 2bφxφy + cφ2

y

β = aφxψx + b(φxψy + φyψx) + cφyψy

γ = aψ2
x + 2bψxψy + cψ2

y.

The coefficients α and γ are zero since φ and ψ are solutions of the charac-
teristic equation. Since

αγ − β2 = (ac − b2)(φxψy − φyψx)
2,

it follows from the above lemma that the coefficient β is different from zero.
2
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Example: Consider differential equation

uxx − uyy = 0.

The associated characteristic differential equation is

χ2
x − χ2

y = 0.

Since µ1 = −1 and µ2 = 1, the fuctions φ and ψ satisfy differential equations

φx + φy = 0

ψx − ψy = 0.

Solutions with ∇φ 6= 0 and ∇ψ 6= 0 are

φ = x − y, ψ = x + y.

Thus, the mapping
ξ = x − y, η = x + y

leads to the simple equation

vξη(ξ, η) = 0.

Assume that v ∈ C2 is a solution, then vξ = f1(ξ) for an arbitrary C1 function
f1(ξ). It follows

v(ξ, η) =

∫ ξ

0

f1(α) dα + g(η),

where g is an arbitrary C2 function. That is, each C2 solution of the differ-
ential equation can be written as

(?) v(ξ, η) = f(ξ) + g(η),

where f, g ∈ C2. On the other hand, for arbitrary C2 functions the function
(?) is a solution of the differential equation vξη = 0. Consequently, each C2

solution of the original equation uxx − uyy = 0 is given by

u(x, y) = f(x − y) + g(x + y),

where f, g ∈ C2.
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3.2 Quasilinear equations of second order

Here we consider equation

n∑

i,j=1

aij(x, u,∇u)uxixj
+ b(x, u,∇u) = 0 (3.12)

in a domain Ω ⊂ R
n, where u : Ω 7→ R. We assume that aij = aji.

As in the previous section we derive the characteristic equation

n∑

i,j=1

aij(x, u,∇u)χxi
χxj

= 0.

In contrast to linear equations, solutions of the characteristic equation de-
pends on the solution considered.

3.2.1 Quasilinear elliptic equations

There is a large class of quasilinear equations such that the associated char-
acteristic equation has no solution χ, ∇χ 6= 0.

Set

U = {(x, z, p) : x ∈ Ω, z ∈ R, p ∈ R
n}.

Definition. The quasilinear equation (3.12) is called elliptic if the matrix
(aij(x, z, p)) is positive definite for each (x, z, p) ∈ U .

Assume equation (3.12) is elliptic and let λ(x, z, p) be the minimum and
Λ(x, z, p) the maximum of the eigenvalues of (aij), then

0 < λ(x, z, p)|ζ|2 ≤
n∑

i,j=1

aij(x, z, p)ζiζj ≤ Λ(x, z, p)|ζ|2

for all ζ ∈ R
n.

Definition. Equation (3.12) is uniformly elliptic if Λ/λ is uniformly bounded
in U .
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An important class of elliptic equations which are not uniformly elliptic
(non-uniformly elliptic) is

n∑

i=1

∂

∂xi

(
uxi√

1 + |∇u|2

)
+ lower order terms = 0. (3.13)

That is, the main part is the minimal surface operator (left hand side of the
minimal surface equation). The coefficients aij are

aij(x, z, p) =
(
1 + |p|2

)−1/2
(

δij −
pipj

1 + |p|2
)

,

δij denotes the Kronecker delta symbol. It follows that

λ =
1

(1 + |p|2)3/2
, Λ =

1

(1 + |p|2)1/2
.

Thus, equation (3.13) is not uniformly elliptic.
The behaviour of solutions of uniformly elliptic equations is similar to

linear elliptic equations in contrast to the behaviour of solutions of non-
uniformly elliptic equations. Typical examples for non-uniformly elliptic
equations are the minimal surface equation and the capillary equation.

3.3 Systems of first order

Consider the quasilinear system

n∑

k=1

Ak(x, u)uuk
+ b(x, u) = 0, (3.14)

where Ak are m × m-matrices, sufficiently regular with respects to their
arguments, and

u =




u1
...

um


 , uxk

=




u1,xk

...
um,xk


 , b =




b1
...

bm


 .

We ask the same question as above: Can we calculate all derivatives of u
in a neighbourhood of a given hypersurface S in R

n defined by χ(x) = 0,
∇χ 6= 0, provided u(x) is given on S?
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For an answer we map S on a flat surface S0 by using the mapping
λ = λ(x) of Section 3.1 and write equation (3.14) in new coordinates. Set
v(λ) = u(x(λ)), then

n∑

k=1

Ak(x, u)χxk
vλn

= terms known on S0.

That is, we can solve this system with respect to vλn
, provided that

det

(
n∑

k=1

Ak(x, u)χxk

)
6= 0

on S.

Definition. Equation

det

(
n∑

k=1

Ak(x, u)χxk

)
= 0

is called characteristic equation associated to equation (3.14) and a surface
S: ξ(x) = 0, defined by a solution ξ, ∇χ 6= 0, of this characteristic equation
is said to be characteristic surface.

Set

C(x, u, ζ) = det

(
n∑

k=1

Ak(x, u)ζk

)

for ζ ∈ R
n and define

Definition. (i) The system (3.14) is hyperbolic at (x, u(x)), if there is a
regular linear mapping ζ = Qη, where η = (η1, . . . , ηn−1, κ), such that there
exists m real roots κk = κk(x, u(x), η1, . . . , ηn−1), k = 1, . . . ,m, of

D(x, u(x), η1, . . . , ηn−1, κ) = 0

for all (η1, . . . , ηn−1), where

D(x, u(x), η1, . . . , ηn−1, κ) = C(x, u(x), x,Qη).
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(ii) System (3.14) is parabolic if there exists a regular linear mapping ζ = Qη
such that D is independent of κ, that is, D depends on less than n parameters.

(iii) System (3.14) is elliptic if C(x, u, ζ) = 0 only if ζ = 0.

Remark. In the elliptic case all derivatives follow from the given data and
the given equation.

3.3.1 Examples

1. Beltrami equations

Wux − bvx − cvy = 0 (3.15)

Wuy + avx + bvy = 0, (3.16)

where W, a, b, c are given functions depending of (x, y), W 6= 0 and the
matrix (

a b
b c

)

is positive definite.
The Beltrami system is a generalization of Cauchy-Riemann equations.

The function f(z) = u(x, y)+ iv(x, y), where z = x+ iy, is called a quasicon-
form mapping, see for example [7], Chapter 12 for an application to partial
differential equations.

Set

A1 =

(
W −b
0 a

)
, A2 =

(
0 −c
W b

)
.

Then the system (3.15), (3.16) can be written as

A1

(
ux

vx

)
+ A2

(
uy

vy

)
=

(
0
0

)
.

Thus,

C(x, y, ζ) =

∣∣∣∣
Wζ1 −bζ1 − cζ2

Wζ2 aζ1 + bζ2

∣∣∣∣ = W (aζ2
1 + 2bζ1ζ2 + cζ2

2 ),
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which is different from zero if ζ 6= 0 according to the above assumptions.
That is, the Beltrami system is elliptic.

2. Maxwell equations

The Maxwell equations in the isotropic case are

c rotx H = λE + εEt (3.17)

c rotx E = −µHt, (3.18)

where
E = (e1, e2, e3)

T electric field strength, ei = ei(x, t), x = (x1, x2, x3),
H = (h1, h2, h3)

T magnetic field strength, hi = hi(x, t),
c speed of light,
λ specific conductivity,
ε dielectricity constant,
µ magnetic permeability.
Here c, λ, ε and µ are all positive constants.

Set p0 = χt, pi = χxi
, i = 1, . . . 3, then the characteristic differential equation

is ∣∣∣∣∣∣∣∣∣∣∣∣

εp0/c 0 0 0 p3 −p2

0 εp0/c 0 −p3 0 p1

0 0 εp0/c p2 −p1 0
0 −p3 p2 µp0/c 0 0
p3 0 −p1 0 µp0/c 0
−p2 p1 0 0 0 µp0/c

∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

The following manipulations lead the a simplification of this equation:
(i) multiply the first three columns with µp0/c,
(ii) multiply the 5th column with −p3 and the the 6th column with p2 and
add the sum to the 1st column,
(iii) multiply the 4th column with p3 and the 6th column with −p1 and add
the sum to the 2th column,
(iv) multiply the 4th column with −p2 and the 5th column with p1 and add
the sum to the 3th column,
(v) expand the resulting determinant with respect to the elements of the 6th,
5th and 4th row.
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Thus ∣∣∣∣∣∣

q + p2
1 p1p2 p1p3

p1p2 q + p2
2 p2p3

p1p3 p2p3 q + p2
3

∣∣∣∣∣∣
= 0,

where

q :=
εµ

c2
p2

0 − g2

with g2 := p2
1 + p2

2 + p2
3. The evaluation of the above equation leads to

q2(q + g2) = 0, that is,

χ2
t

(εµ

c2
χ2

t − |∇xχ|2
)

= 0.

It follows immediately that Maxwell equations are a hyperbolic system, see an
exercise. There are two solutions of this characteristic equation. The first one
are characteristic surfaces S(t), defind by χ(x, t) = 0, which satisfy χt = 0.
These surfaces are called stationary waves. The second type of characteristic
surfaces are defined by solutions of

εµ

c2
χ2

t = |∇xχ|2.

Functions defined by χ = f(n · x − V t) are solutions of this equation. Here
is f(s) an arbitrary function with f ′ 6= 0, n is unit vector and V = c/

√
εµ.

The associated characteristic surfaces S(t) are defined by

χ(x, t) ≡ f(n · x − V t) = 0,

here we assume that 0 is in he range of f : R 7→ R. Thus, S(t) is defined
by n · x− V t = c, where c is a fixed constant. It follows that the planes S(t)
with normal n move with speed V in direction of n, see Figure 3.4

V is called speed of the plane wave S(t).

Remark. According to the previous discussions, singularities of a solution
of Maxwell equations are located at least on characteristic surfaces.

A special case of Maxwell equations are the telegraph equations, which
follow from Maxwell equations if div E = 0 and div H = 0, that is E and H
are fields free of source. In fact, it is sufficient to assume that this assumption
is satisfied at a fixed time t0 only, see an exercise.
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x

x2

1n

S(t)

S(0)

d(t)

Figure 3.4: d′(t) is the speed of plane waves

Since

rotx rotx A = gradx divx A −4xA

for each C2 vector field it follows from Maxwell equations the uncoupled
system

4xE =
εµ

c2
Ett +

λµ

c2
Et

4xH =
εµ

c2
Htt +

λµ

c2
Ht.

3. Equations of gas dynamics

Consider the following two quasilinear equations of first order.

vt + (v · ∇x) v +
1

ρ
∇xp = f (Euler equations).

Here is
v = (v1, v2, v3) the vector of speed, vi = vi(x, t), x = (x1, x2, x3),
p pressure, p = (x, t),
ρ density, ρ = ρ(x, t),
f = (f1, f2, f3) density of the external force, fi = fi(x, t),
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(v · ∇x)v ≡ (v · ∇xv1, v · ∇xv2, v · ∇xv3))
T .

The second equation is

ρt + v · ∇xρ + ρ divx v = 0 (conservation of mass).

Assume the gas is compressible and that there is a function (state equation)

p = p(ρ),

where p(ρ) is given such that p′(ρ) > 0 if ρ > 0. Then the above system of
four equtions is

vt + (v · ∇)v +
1

ρ
p′(ρ)∇ρ = f (3.19)

ρt + ρ div v + v · ∇ρ = 0, (3.20)

where ∇ ≡ ∇x and div ≡ divx, that is, these operators apply on the spatial
variables only.

The characteristic differential equation is here

∣∣∣∣∣∣∣∣∣

dχ
dt

0 0 1
ρ
p′χx1

0 dχ
dt

0 1
ρ
p′χx2

0 0 dχ
dt

1
ρ
p′χx3

ρχx1
ρχx2

ρχx3

dχ
dt

∣∣∣∣∣∣∣∣∣
= 0,

where
dχ

dt
:= χt + (∇xχ) · v.

Evaluating the determinant, we get the characteristic differential equation

(
dχ

dt

)2
((

dχ

dt

)2

− p′(ρ)|∇xχ|2
)

= 0. (3.21)

This equation implies consequences for the speed of the move of characteristic
surfaces as the following consideration shows.

Consider a family S(t) of surfaces in R
3 defined by χ(x, t) = c, where

x ∈ R
3 and c is a fixed constant. As usually, we assume that ∇xχ 6= 0. One
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of the two normals on S(t) at a point of the surface S(t) is given by, see an
exercise,

n =
∇xχ

|∇xχ|
. (3.22)

Let Q0 ∈ S(t0) and let Q1 ∈ S(t1) be a point on the line defined by Q0 + sn,
where n is the normal (3.22 on S(t0) at Q0 and t0 < t1, t1 − t0 small, see
Figure 3.5.

)0S(t

S(t )1

n
Q

Q
1

0

Figure 3.5: Figure to the definition of the speed of a surface

Definition. The limit

P = lim
t1→t0

|Q1 − Q0|
t1 − t0

is called speed of the surface S(t).

Proposition. The speed of the surface S(t) is

P = − χt

|∇xχ|
. (3.23)

Proof. The proof follows from χ(Q0, t0) = 0 and χ(Q0 + dn, t0 + 4t) = 0,
where d = |Q1 − Q0| and 4t = t1 − t0. 2

Set vn := v · n which is the component of the velocity vector in direction
n. From (3.22) it follows

vn =
1

|∇xχ|
v · ∇xχ.
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Definition. V := P − vn, the difference of the speed of the surface and the
speed of liquid particles, is called relative speed.

n

v
S

Figure 3.6: Figure to the definition of relative speed

Using the above formulae for P and vn it follows

V = P − vn = − χt

|∇xχ|
− v · ∇xχ

|∇xχ|
= − 1

|∇xχ|
dχ

dt
.

Then, it follows from the characteristic equation (3.21) that

V 2|∇xχ|2
(
V 2|∇xχ|2 − p′(ρ)|∇xχ|2

)
= 0.

An interesting conclusion is that there are two relative speeds: V = 0 or
V 2 = p′(ρ).

Definition.
√

p′(ρ) is called sound speed.

3.4 Systems of second order

Here we consider the system

n∑

k,l=1

Akl(x, u,∇u)uxkxl
+ lower order terms = 0, (3.24)

where Akl are (m×m) matrices and u = (u1, . . . , um)T . We assume Akl = Alk,
which is no restriction of generality provided u ∈ C2 is satisfied. As in
the previous sections, the classification follows from the question whether
or not we can calculate formally the solution from the differential equations
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if sufficiently many data are given on an initial manifold. Let the initial
manifold S be given by χ(x) = 0 and assume that ∇χ 6= 0. The mapping
x = x(λ), see previous sections, leads to

n∑

k,l=1

Aklχxk
χxl

vλnλn
= terms known on S,

where v(λ) = u(x(λ)).
The characteristic equation is here

det

(
n∑

k,l=1

Aklχxk
χxl

)
= 0.

If there is a solution χ with ∇χ 6= 0, then it is possible that second derivatives
are not continuous in a neighbourhood of S.

Definition. The system is called elliptic if

det

(
n∑

k,l=1

Aklζkζl

)
6= 0

for all ζ ∈ R
n, ζ 6= 0.

3.4.1 Examples

1. Navier-Stokes equations

The Navier-Stokes system for a viscous incompressible liquid is

vt + (v · ∇x)v = −1

ρ
∇xp + γ4xv

divx v = 0,

where ρ is the (constant and positive) density of liquid,
γ is the (constant and positive) viscosity of liquid,
v = v(x, t) velocity vector of liquid particles, x ∈ R

3 or in R
2,

p = p(x, t) pressure.
The problem is to find solutions v, p of the above system.
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2. Linear elasticity

Consider the system

ρ
∂2u

∂t2
= µ4xu + (λ + µ)∇x(divx u) + f. (3.25)

Here is, in the case of an elastic body in R
3,

u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) displacement vector,
f(x, t) density of external force,
ρ (constant) density,
λ, µ (positive) Lamé constants.

The characteristic equation is det C = 0, where the elements of the matrix
C are given by

cij = (λ + µ)χxi
χxj

+ δij

(
µ|∇xχ|2 − ρχ2

t

)
.

Thus, the characteristic equation is
(
(λ + 2µ)|∇xχ|2 − ρχ2

t

) (
µ|∇xχ|2 − ρχ2

t

)2
= 0.

It follows that two different speeds of characteristic surfaces S(t) defined by
χ(x, t) = const. are possible, namely

P1 =

√
λ + 2µ

ρ
, and P2 =

√
µ

ρ
.

We recall that P = −χt/|∇xχ|.

3.5 Theorem of Cauchy and Kovalevski

Consider the quasilinear system of first order (3.14) of Section 3.3. Assume
an initial manifols S is given by χ(x) = 0, ∇χ 6= 0 and suppose that χ is
not characteristic. Then, see Section 3.3, the system (3.14) can be written
as, where we denote λ by x again, and the function v(λ) by u(x),

uxn
=

n−1∑

i=1

ai(x, u)uxi
+ b(x, u) (3.26)

u(x1, . . . , xn−1, 0) = f(x1, . . . , xn−1) (3.27)
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Here is u = (u1, . . . , um)T , b = (b1, . . . , bn)T and ai are (m×m) matrices. We
assume ai, b and f are in C∞ with respect to their arguments. From (3.26)
and (3.27) it follows that we can calculate formal all derivatives Dαu in in a
neigbourhood of the plane {x : xn = 0}, in particular in a neighbourhood of
0 ∈ R

n. Thus, we have a formally power series of u(x) in x = 0:

u(x) ∼
∑ 1

α!
Dαu(0)xα.

For notations and definitions used here and in the following see the appendix
to this section.

Than, as usually, two questions arise:

(i) Does the power series converge in a neighbourhood of 0 ∈ R
n?

(ii) Is a convergent power series a solution of the initial value problem (3.26),
(3.27)?

Remark. Quite different to this power series method is the method of
asymptotic expansions. Here one is interested in a good approximation of
an unknown solution of an equation by a finite sum

∑N
i=0 φi(x) of functions

φi. In general, the infinite sum
∑∞

i=0 φi(x) does not converge, in contrast
to the power series method of this section, see[12] for asymtotic formulae in
capillarity.

Theorem. There is a neighbourhood of 0 ∈ R
n such there is a real analytic

solution of the initial value problem (3.26), (3.27). This solution is unique
in the class of real analytic functions.

Proof. The proof is taken from F. John [8]. We introduce u − f as the new
solution for which we are looking at and we add a new coordinate u? to the
solution vector by setting u?(x) = xn. Then

u?
xn

= 1, u?
xk

= 0, k = 1, . . . , n − 1, u?(x1, . . . , xn−1, 0) = 0.
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Then the extended system (3.26), (3.27) is



u1,xn

...
um,xn

u?
xn


 =

n−1∑

i=1

(
ai 0
0 0

)



u1,xi

...
um,xi

u?
xi


 +




b1
...

bm

1




and the associated initial condition is u(x1, . . . , xn−1, 0) = 0. The new u is
u = (u1, . . . , um)T , the new ai are ai(x1, . . . , xn−1, u1, . . . , um, u?) and the new
b is b = (x1, . . . , xn−1, u1, . . . , um, u?)T .

Thus, we are led to an initial value problem of type

uj,xn
=

n−1∑

i=1

N∑

k=1

ai
jk(z)uk,xi

+ bj(z), j = 1, . . . , N (3.28)

uj(x) = 0 if xn = 0, (3.29)

where j = 1, . . . , N and z = (x1, . . . , xn−1, u1, . . . , uN).
The point is here that ai

jk and bj are independent of xn. This fact sim-
plifies the proof of the theorem.

From (3.28) and (3.29) we can calculate formally all Dβuj. Thus, we have
formal power series for uj:

uj(x) ∼
∑

α

c(j)
α xα,

where

c(j)
α =

1

α!
Dαuj(0).

We will show that these power series are (absolutely) convergent in a neigh-
bourhood of 0 ∈ R

n, that is, they are real analytic functions, see the appendix
for the definition of real analytic functions. Inserting these fuctions on the
left and into the right hand side of (3.28) we obtain on the right and on
the left hand side real analytic functions. This follows since compositions
of real analytic functions are real analytic again, see Proposition A7 in the
appendix to this section. Since the resulting power series on the left and on
the rigt have the same coefficients caused by the calculation of the deriva-
tives Dαuj(0) from (3.28). It follows that uj(x), j = 1, . . . , n, defined by
its formal power series are solutions of the initial value problem (3.28), (3.29).
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Set

d =

(
∂

∂z1

, . . . ,
∂

∂zN+n−1

)

Lemma 1. Assume u ∈ C∞ in a neighbourhood of 0 ∈ R
n. Then

Dαuj(0) = Pα

(
dβai

jk(0), dγbj(0)
)
,

where |β|, |γ| ≤ |α| and Pα are polynomials in the indicated arguments with
nonnegative integers as coefficients which are independent of ai and of b.

Proof. It follows from equation (3.28) that

DnD
αuj(0) = Pα(dβai

jk(0), dγbj(0), Dδuk(0)). (3.30)

Here is ∂/∂xn and β, γ, δ satisfy the inequalities

|β|, |γ| ≤ |α|, |δ| ≤ |α| + 1,

and, which is essential in the proof, the last coordinates in the multiindices
α = (α1, . . . , αn), δ = (δ1, . . . , δn) satisfy δn ≤ αn since the right hand side
of (3.28) is independent of xn. Moreover, it follows from (3.28) that the
polynomials Pα have integers as coefficients. The initial condition (3.29)
implies

Dαuj(0) = 0, (3.31)

where α = (α1, . . . , αn−1, 0), that is, αn = 0. Then, the proof is by induction
with respect to αn. The induction starts with αn = 0, then we replace
Dδuk(0) in the right hand side of (3.30) by (3.31), that is by zero. Then it
follows from (3.30)

Dαuj(0) = Pα(dβai
jk(0), dγbj(0), Dδuk(0)),

where α = (α1, . . . , αn−1, 1). 2

Definition. Let f = (f1, . . . , fm), F = (F1, . . . , Fm), fi = fi(x), Fi = Fi(x),
and f, F ∈ C∞. We say f is majorized by F if

|Dαfk(0)| ≤ DαFk(0), k = 1, . . . ,m

for all α. We write f << F , if f is majorized by F .
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Definition. The initial value problem

Uj,xn
=

n−1∑

i=1

N∑

k=1

Ai
jk(z)Uk,xi

+ Bj(z) (3.32)

Uj(x) = 0 if xn = 0, (3.33)

j = 1, . . . , N , Ai
jk, Bj real analytic, ist called majorizing problem to (3.28),

(3.29) if
ai

jk << Ai
jk and bj << Bj.

Lemma 2. The formal power series

∑

α

1

α!
Dαuj(0)xα,

where Dαuj(0) are defined in Lemma 1, is convergent in a neighbourhood of
0 ∈ R

n if there exists a majorizing problem which has a real analytic solution
U in x = 0, and

|Dαuj(0)| ≤ DαUj(0).

Proof. It follows from Lemma 1 and from the assumption of this lemma that

|Dαuj(0)| ≤ Pα

(
|dβai

jk(0)|, |dγbj(0)|
)

≤ Pα

(
|dβAi

jk(0)|, |dγBj(0)|
)
≡ DαUj(0).

The formal power series ∑

α

1

α!
Dαuj(0)xα,

is convergent since

∑

α

1

α!
|Dαuj(0)xα| ≤

∑

α

1

α!
DαUj(0)|xα|.

The right hand side is convergent in a neighbourhood of x ∈ R
n by assump-

tion. 2

Lemma 3. There is a majorising problem which has a real analytic solution.
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Proof. Since ai
ij(z), bj(z) are real analytic in a neighbourhood of z = 0 it

follows from Proposition A5 in the appendix of this section that there are
positive constants M and r such that all these functions are majorized by

Mr

r − z1 − . . . − zN+n−1

.

Thus, a majorizing problem is

Uj,xn
=

Mr

r − x1 − . . . − xn−1 − U1 − . . . − UN

(
1 +

n−1∑

i=1

N∑

k=1

Uk,xi

)

Uj(x) = 0 if xn = 0,

j = 1, . . . , N .
The solution of this problem is

Uj(x1, . . . , xn−1, xn) = V (x1 + . . . + xn−1, xn), j = 1, . . . , N,

where V (s, t), s = x1 + . . .+xn−1, t = xn is the solution of the Cauchy initial
value problem

Vt =
Mr

r − s − NV
(1 + N(n − 1)Vs)

V (s, 0) = 0.

The solution is, see an exercise,

V (s, t) =
1

Nn

(
r − s −

√
(r − s)2 − 2nMNrt

)
.

This function is real analytic in (s, t) at (0, 0). It follows that Uj(x) are also
real analytic functions. Thus the Cauchy-Kovalevski theorem is shown. 2

Examples:

1. Ordinary differential equations

Consider the initial value problem

y′(x) = f(x, y(x))

y(x0) = y0,
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where x0 ∈ R and y0 ∈ R
n are given. Assume f(x, y) is real analytic in a

neighbourhood of (x0, y0) ∈ R×R
n. Then it follows from the above theorem

that there exists an analytic solution y(x) of the initial value problem in a
neighbourhood of x0. This solution is unique in the class of analytic functions
according to the theorem of Cauchy-Kovalevski. From the Picard-Lindelöf
theorem it follows that this analytic solution is even unique in the class of
C1-functions.

2. Partial differential equations of second order

Consider the boundary value problem for two variables

uyy = f(x, y, u, ux, uy, uxx, uxy)

u(x, 0) = φ(x)

uy(x, 0) = ψ(x).

We assume that φ, ψ are analytic in a neighbourhood of x = 0 and that f
is real analytic in a neighbourhood of

(0, 0, φ(0), φ′(0), ψ(0), ψ′(0)).

There exists a real analytic solution in a neigbourhood of 0 ∈ R
2 of the above

initial value problem.

In particular, there is a real analytic solution in a neigbourhood of 0 ∈ R
2

of the initial value problem

4u = 1

u(x, 0) = 0

uy(x, 0) = 0.

The proof follows by writing the above problem as a system. Set p = ux,
q = uy, r = uxx, s = uxy, t = uyy, then

t = f(x, y, u, p, q, r, s).



3.5. THEOREM OF CAUCHY AND KOVALEVSKI 93

Set U = (u, p, q, r, s, t)T , b = (q, 0, t, 0, 0, fy + fuq + fqt)
T and

A =




0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 fp 0 fr fs




.

Then the rewritten differential equation is the system Uy = AUx + b with the
initial condition

U(x, 0) = (φ(x), φ′(x), ψ(x), φ′′(x), ψ′(x), f0(x)) ,

where f0(x) = f(x, 0, φ(x), φ′(x), ψ(x), φ′′(x), ψ′(x)).

3.5.1 Appendix: Real analytic functions

Multi-index notation

The following multi-index notation simplifies many presentations of formulae.
Let x = (x1, . . . , xn) and

u : Ω ⊂ R
n 7→ R (or R

m for systems).

The n-tupel of nonnegative integers (including zero)

α = (α1, . . . , αn)

is called multi-index. Set

|α| = α1 + . . . + αn

α! = α1!α2! · . . . · αn!

xα = xα1
1 xα2

2 · . . . · xαn

n (for a monom)

Dk =
∂

∂xk

D = (D1, . . . , Dn)

Du = (D1u, . . . , Dnu) ≡ ∇u ≡ grad u

Dα = Dα1
1 Dα2

2 · . . . · Dαn

n ≡ ∂|α|

∂xα1
1 ∂xα2

2 . . . ∂xαn
n

.
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Define a partial order by

α ≥ β if and only if αi ≥ βi for all i.

Sometimes we use the notations

0 = (0, 0 . . . , 0), 1 = (1, 1 . . . , 1),

where 0, 1 ∈ R
n.

Using this multi-index notion, we have

1.

(x + y)α =
∑

β, γ
β + γ = α

α!

β!γ!
xβyγ,

where x y ∈ R
n and α, β, γ are multi-indices.

2. Taylor expansion for a polynomial f(x) of degree m:

f(x) =
∑

|α|≤m

1

α!
(Dαf(0)) xα,

here is Dαf(0) = (Dαf(x)) |x=0.

3. Let x = (x1, . . . , xn) and m ≥ 0 an integer, then

(x1 + . . . + xn)m =
∑

|α|=m

m!

α!
xα.

4.

α! ≤ |α|! ≤ n|α|α!.

5. Leibniz’s rule:

Dα(fg) =
∑

β, γ
β + γ = α

α!

β!γ!
(Dβf)(Dγg).
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6.

Dβxα =
α!

(α − β)!
xα−β if α ≥ β

Dβxα = 0 otherwise.

7. Directional derivative:

dm

dtm
f(x + ty) =

∑

|α|=m

|α|!
α!

(Dαf(x + ty)) yα,

where y, y ∈ R
n and t ∈ R.

8. Taylor’s theorem: Let u ∈ Cm+1 in a neighbourhood U(y) of y, then, if
x ∈ U(y),

u(x) =
∑

|α|≤m

1

α!
(Dαu(y)) (x − y)α + Rm,

where

Rm =
∑

|α|=m+1

1

α!
(Dαu(y + δ(x − y))) xα, 0 < δ < 1,

δ = δ(u,m, x, y), or

Rm =
1

m!

∫ 1

0

(1 − t)mΦ(m+1)(t) dt,

where Φ(t) = u(y + t(x − y)). It follows from 7. that

Rm = (m + 1)
∑

|α|=m+1

1

α!

(∫ 1

0

(1 − t)Dαu(y + t(x − y)) dt

)
(x − y)α.

9. Using multi-index notation, the general linear partial differential equation
of order m can be written as

∑

|α|≤m

aα(x)Dαu = f(x) in Ω ⊂ R
n.
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Power series

Here we collect some definitions and results for power series in R
n.

Definition. Let cα ∈ R (or ∈ R
m). The series

∑

α

cα ≡
∞∑

m=0


 ∑

|α|=m

cα




is said to be convergent if

∑

α

|cα| ≡
∞∑

m=0


 ∑

|α|=m

|cα|




is convergent.

Remark. According to the above definition, a convergent series is absolutely
convergent. Then, it follows that we can rearrange the order of summation.

Using above multi-index notation and keeping in mind that we can rearrange
convergent series, we have

10. Let x ∈ R
n, then

∑

α

xα =
n∏

i=1

(
∞∑

αi=0

xαi

i

)

=
1

(1 − x1)(1 − x2) · . . . · (1 − xn)

=
1

(1 − x)1
,

provided |xi| < 1 is satisfied for each i. This follows since we have in the first
line the same terms on the left and on the right hand side.
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11. Assume x ∈ R
n and |x1| + |x2| + . . . + |xn| < 1, then

∑

α

|α|!
α!

xα =
∞∑

j=0

∑

|α|=j

|α|!
α!

xα

=
∞∑

j=0

(x1 + . . . + xn)j

=
1

1 − (x1 + . . . + xn)
.

12. Let x ∈ R
n, |xi| < 1 for all i, and β is a given multi-index. Then

∑

α≥β

α!

(α − β)!
xα−β = Dβ 1

(1 − x)1

=
β!

(1 − x)1+β
.

13. Let x ∈ R
n and |x1| + . . . + |xn| < 1. Then

∑

α≥β

|α|!
(α − β)!

xα−β = Dβ 1

1 − x1 − . . . − xn

=
|β|!

(1 − x1 − . . . − xn)1+|β|
.

Consider the power series ∑

α

cαxα (3.34)

and assume this series is convergent for a z ∈ R
n. Then, by definition,

µ :=
∑

α

|cα||zα| < ∞

and the series (3.34) is uniformly convergent for all x ∈ Q(z), where

Q(z) : |xi| ≤ |zi| for all i.

Thus, the power series (3.34) defines a continuous function defined on Q(z),
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z

Q(z)

D

Figure 3.7: Definition of D ∈ Q(z)

according to a theorem of Weierstraß.
The interior of Q(z) is not empty if and only if zi 6= 0 for all i, see

Figure 3.7. For x in a fixed compact subset D of Q(z) there is a q, 0 < q < 1,
such that

|xi| ≤ q|zi| for all i.

Set

f(x) =
∑

α

cαxα.

Proposition A1. (i) In every compact subset D of Q(z) one has f ∈ C∞(D)
and the formal differentiate series, that is

∑
α Dβcαxα, is uniformly conver-

gent on the closure of D and is equal to Dβf .

(ii)

|Dβf(x)| ≤ M |β|!r−|β| in D,

where

M =
µ

(1 − q)n
, r = (1 − q) min

i
|zi|.

Proof. See F. John [8], p. 64. Or an exercise. Hint: Use formula 12. where
x is replaced by (q, . . . , q).
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Remark. From the proposition it follows

cα =
1

α!
Dαf(0).

Definition. Assume f is defined on a domain Ω ⊂ R
n, then, f is said to be

real analytic in y ∈ Ω if there are cα ∈ R and if there is a neighbourhoud
N(y) of y such that

f(x) =
∑

α

cα(x − y)α

for all x ∈ N(y), and the series converges (absolutely) for each x ∈ N(y).
A function f is called real analytic in Ω if it is real analytic for each y ∈ Ω.
We will write f ∈ Cω(Ω) in the case that f is real analytic in the domain Ω.
A vector valued function f(x) = (f1(x), . . . , fm) is called real analytic if each
coordinate is real analytic.

Proposition A2. (i) Let f ∈ Cω(Ω). Then f ∈ C∞(Ω).

(ii) Assume f ∈ Cω(Ω). Then for each y ∈ Ω there exists a neighbourhood
N(y) and positive constants M , r such that

f(x) =
∑

α

1

α!
(Dαf(y))(x − y)α

for all x ∈ N(y), and the series converges (absolutely) for each x ∈ N(y),
and

|Dβf(x)| ≤ M |β|!r−|β|.

The proof follows from Proposition A1.

An open set Ω ∈ R
n is called connected if Ω is not a union of two non-empty

open sets with empty intersection. From the theory of one complex variable
we know that a continuation of an analytic function is uniquely determined.
The same is true for real analytic functions.

Proposition A3. Assume f ∈ Cω(Ω) and Ω is connected. Then f is
determined uniquely if for one z ∈ Ω all Dαf(z) are known.
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Proof. See F. John [8], p. 65. Suppose g, h ∈ Cω(Ω) and Dαg(z) = Dαh(z)
for every α. Set f = g − h and

Ω1 = {x ∈ Ω : Dαf(x) = 0 for all α},
Ω2 = {x ∈ Ω : Dαf(x) 6= 0 for at least one α}.

The set Ω2 is open since Dα are continuous in Ω. The set Ω1 is also open
since f(x) = 0 in a neighbourhood of y ∈ Ω1. This follows from

f(x) =
∑

α

1

α!
(Dαf(y))(x − y)α.

Since z ∈ Ω1, that is Ω1 6= ∅, it follows Ω2 = ∅. 2

It was shown in Proposition A2 that derivatives of a real analytic function
satisfy estimates. On the other hand it follows, see the next proposition, that
a function f ∈ C∞ is real analytic if these estimates are satisfied.

Definition. Let y ∈ Ω and M, r positive constants. Then f is said to be in
the class CM,r(y) if f ∈ C∞ in a neighbourhood of y and if

|Dβf(y)| ≤ M |β|!r−|β|

for all β.

Proposition A4. f ∈ Cω(Ω) if and only if f ∈ C∞(Ω) and for every
compact subset S ⊂ Ω there are positive constants M, r such that

f ∈ CM,r(y) for all y ∈ S.

Proof. See F. John [8], pp. 65-66. We will prove the local version of the
proposition, that is, we show it for each fixed y ∈ Ω. The general version
follows from Heine-Borel theorem. Because of Proposition A3 it remains to
show that taylor series

∑

α

1

α!
Dαf(y)(x − y)α

converges (absolutely) in a neighbourhood of y and that this series is equal
to f(x).
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Define a neighbourhood of y by

Ud(y) = {x ∈ Ω : |x1 − y1| + . . . + |xn − yn| < d},
where d is a sufficiently small positive constant. Set Φ(t) = f(y + t(x − y)).
The one-dimensional Taylor theorem says

f(x) = Φ(1) =

j−1∑

k=0

1

k!
Φ(k)(0) + rj,

where

rj =
1

(j − 1)!

∫ 1

0

(1 − t)j−1Φ(j)(t) dt.

From formula 7. for directional derivatives it follows for x ∈ Ud(y) that

1

j!

dj

dtj
Φ(t) =

∑

|α|=j

1

α!
Dαf(y + t(x − y))(x − y)α.

From the assumption and the multinomial formula 3. we get for 0 ≤ t ≤ 1
∣∣∣∣
1

j!

dj

dtj
Φ(t)

∣∣∣∣ ≤ M
∑

|α|=j

|α|!
α!

r−|α| |(x − y)α|

= Mr−j (|x1 − y1| + . . . + |xn − yn|)j

≤ M

(
d

r

)j

.

Choose d > 0 such that d < r, then the Taylor series converges (absolutely)
in Ud(y) and it is equal to f(x) since the remainder satisfies, see the above
estimate,

|rj| =

∣∣∣∣
1

(j − 1)!

∫ 1

0

(1 − t)j−1Φj(t) dt

∣∣∣∣ ≤ M

(
d

r

)j

.

2

We remember that the notation f << F (f is majorized by F ) was
defined in the previous section.

Proposition A5. (i) f = (f1, . . . , fm) ∈ CM,r(0) if and only if f <<
(Φ, . . . , Φ), where

Φ(x) =
Mr

r − x1 − . . . − xn

.
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(ii) f ∈ CM,r(0) and f(0) = 0 if and only if

f << (Φ − M, . . . , Φ − M),

where

Φ(x) =
M(x1 + . . . + xn)

r − x1 − . . . − xn

.

Proof.
DαΦ(0) = M |α|!r−|α|.

2

Remark. The definition of f << F implies, trivially, that Dαf << DαF .

The next proposition shows that compositions majorize if the involved func-
tions majorize. More precisely, we have

Proposition A6. Let f, F : R
n 7→ R

m and g, G maps a neighbourhood of
0 ∈ R

m into R
p. Assume all functions f(x), F (x), g(u), G(u) are in C∞,

f(0) = F (0) = 0, f << F and g << G. Then g(f(x)) << G(F (x)).

Proof. See F. John [8], p. 68. Set

h(x) = g(f(x)), H(x) = G(F (x)).

For each coordinate hk of h we have, according to the chain rule,

Dαhk(0) = Pα(δβgl(0), Dγfj(0)),

where Pα are polynomials with nonnegative integers as coefficients, Pα are
independent on g or f and δ := (∂/∂u1, . . . , ∂/∂um). Thus,

|Dαhk(0)| ≤ Pα(|δβgl(0)|, |Dγfj(0)|)
≤ Pα(δβGl(0), DγFj(0))

= DαHk(0).

2
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Using this result and Proposition A4 which characterizes real analytic func-
tions, it follows that compositions of real analytic functions are real analytic
functions again.

Proposition A7. Assume f(x) and g(u) are real analytic, then g(f(x)) is
real analytic at all x for which f(x) is in the domain of definition of g.

Proof. See F. John [8], p. 68. Assume that f maps a neighbourhood of
y ∈ R

n in R
m and g maps a neighbourhood of v = f(y) in R

m. Then
f ∈ CM,r(y) and g ∈ Cµ,ρ(v) implies

h(x) := g(f(x)) ∈ Cµ,ρr/(mM+ρ)(y).

Once one has shown this inclusion, the proposition follows from Proposition
A4. To show the inclusion, we set

h(y + x) := g(f(y + x)) ≡ g(v + f(y + x) − f(x)) =: g∗(f ∗(x)),

where v = f(y) and

g∗(u) : = g(v + u) ∈ Cµ,ρ(0)

f ∗(x) : = f(y + x) − f(y) ∈ CM,r(0).

In the above formulae v, y are considered as fixed parameters. From Propo-
sition A5 it follows

f ∗(x) << (Φ − M, . . . , Φ − M) =: F

g∗(u) << (Ψ, . . . , Ψ) =: G,

where

Φ(x) =
Mr

r − x1 − x2 − . . . − xn

Ψ(u) =
µρ

ρ − x1 − x2 − . . . − xn

.

From Proposition A6 we get

h(y + x) << (χ(x), . . . , χ(x)) ≡ G(F ),
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where

χ(x) =
µρ

ρ − m(Φ(x) − M)

=
µρ(r − x1 − . . . − xn)

ρr − (ρ + mM)(x1 + . . . + xn)

<<
µρr

ρr − (ρ + mM)(x1 + . . . + xn)

=
µρr/(ρ + mM)

ρr/(ρ + mM) − (x1 + . . . xn)
.

See an exercise for the ”<<”-inequality. 2
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3.6 Exercises

1. Let χ: R
n → R in C1, ∇χ 6= 0. Show that for given x0 ∈ R

n there
is in a neighbourhood of x0 a local diffeomorphism λ = Φ(x), Φ :
(x1, . . . , xn) 7→ (λ1, . . . , λn), such that λn = χ(x).

2. Show that the differential equation

a(x, y)uxx + 2b(x, y)uxy + c(x, y)uyy + lower order terms = 0

is elliptic if ac − b2 > 0, parabolic if ac − b2 = 0 and hyperbolic if
ac − b2 < 0.

3. Show that in the hyperbolic case there exists a solution of φx+µ1φy = 0,
see equation (3.9), such that ∇φ 6= 0.

Hint. Consider an appropriate Cauchy initial value problem.

4. Show equation (3.4).

5. Find the type of

Lu := 2uxx + 2uxy + 2uyy = 0

and transform this equation into an equation with vanishing mixed
derivatives by using the orthogonal mapping (transform to principal
axis) x = Uy, U orthogonal.

6. Determine the type of the following equation at (x, y) = (1, 1/2).

Lu := xuxx + 2yuxy + 2xyuyy = 0.

7. Find all C2-solutions of

uxx − 4uxy + uyy = 0.

Hint. Transform to principal axis and stretching of axis leads to the
wave equation.
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8. Oscillations of a beam are described by

wx −
1

E
σt = 0

σx − ρwt = 0,

where σ stresses, w deflection of the beam and E, ρ positive constants.
a) Determine the type of the system.
b) Transform the system into two uncoupled equations, that is, w, σ
occur only in one equation, respectively.
c) Find non-zero solutions.

9. Find nontrivial solutions (∇χ 6= 0) of the characteristic equation to

x2uxx − uyy = f(x, y, u,∇u),

where f is given.

10. Determine the type of

uxx − xuyx + uyy + 3ux = 2x,

where u = u(x, y).

11. Transform equation

uxx + (1 − y2)uxy = 0,

u = u(x, y) into its normal form.

12. Show that

λ =
1

(1 + |p|2)3/2
, Λ =

1

(1 + |p|2)1/2
.

are the minimum and maximum of eigenvalues of the matrix (aij),
where

aij =
(
1 + |p|2

)−1/2
(

δij −
pipj

1 + |p|2
)

.

13. Show that Maxwell equations are a hyperbolic system.
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14. Consider Maxwell equations and prove that div E = 0 and div H = 0
for all t if these equations are satisfied for a fixed time t0.

Hint. div rot = 0.

15. Assume a characteristic surface S(t) in R
3 is defined by χ(x, y, z, t) =

const. such that χt = 0 and χz 6= 0. Show that S(t) has a nonparamet-
ric representation z = u(x, y, t) with ut = 0, that is S(t) is independent
of t.

16. Prove formula (3.22) for the normal on a surface.

17. Prove formula (3.23) for the speed of the surface S(t).

18. Write the Navier-Stokes system as a system of type (3.24).

19. Show that the following system (linear elasticity, stationary case of (3.25)
in the two dimensional case) is elliptic

µ4u + (λ + µ) grad(div u) + f = 0,

where u = (u1, u2). The vector f = (f1, f2) is given and λ, µ are
positive constants.

20. Discuss the type of the following system in stationary gas dynamics
(isentrop flow) in R

2.

ρuux + ρvuy + a2ρx = 0

ρuvx + ρvvy + a2ρy = 0

ρ(ux + vy) + uρx + vρy = 0.

Here are (u, v) velocity vector, ρ density and a =
√

p′(ρ) the sound
velocity.

21. Show formula 7. (directional derivative) of the lecture notes.

Hint. Induction with respect to m.
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22. Let y = y(x) be the solution of:

y′(x) = f(x, y(x))

y(x0) = y0,

where f is real analytic in a neighbourhood of (x0, y0) ∈ R
2. Find the

polynomial P of degree 2 such that

y(x) = P (x − x0) + O(|x − x0|3)
as x → x0.

23. Let u be the solution of

4u = 1

u(x, 0) = uy(x, 0) = 0.

Find the polynomial P of degree 2 such that

u(x, y) = P (x, y) + O((x2 + y2)3/2)

as (x, y) → (0, 0).

24. Solve the Cauchy initial value problem

Vt =
Mr

r − s − NV
(1 + N(n − 1)Vs)

V (s, 0) = 0.

Hint. Multiply the differential equation with (r − s − NV ).

25. Write 42u = −u as a system of first order.

Hint. 42u ≡ 4(4u).

26. Write the minimal surface equation

∂

∂x

(
ux√

1 + u2
x + u2

y

)
+

∂

∂y

(
uy√

1 + u2
x + u2

y

)
= 0

as a system of first order.

Hint. v1 := ux/
√

1 + u2
x + u2

y, v2 := uy/
√

1 + u2
x + u2

y.



3.6. EXERCISES 109

27. Let f : R × R
m → R

m be real analytic in (x0, y0). Show that a real
analytic solution in a neighbourhood of x0 of the problem

y′(x) = f(x, y)

y(x0) = y0

exists and is equal to the C1[x0 − ε, x0 + ε]-solution, ε > 0 sufficiently
small.

28. Show (see the proof of Proposition A7)

µρ(r − x1 − . . . − xn)

ρr − (ρ + mM)(x1 + . . . + xn)
<<

µρr

ρr − (ρ + mM)(x1 + . . . + xn)
.

Hint. Leibniz’s rule.

29. Let u(x1, x2) be a solution of Laplace equation 4u = 0 such that
u = f(θ), ∂u

∂r
= g(θ) if r = 1. The given Cauchy initial data f, g are

real analytic and 2π- periodic. Here r, θ denote polar coordinates, that
is, x1 = r cos θ, x2 = r sin θ. Show that u is a real analytic for all θ,
and |r − 1| sufficiently small.
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Chapter 4

Hyperbolic equations

Here we consider hyperbolic equations of second order, mainly wave equa-
tions.

4.1 One dimensional wave equation

The one-dimensional wave equation is given by

1

c2
utt − uxx = 0, (4.1)

where u = u(x, t) is a scalar function of two variables and c is a positive
constant. According to previous considerations, all C2-solutions of the wave
equation are given by

u(x, t) = f(x + ct) + g(x − ct), (4.2)

where f and g are arbitrary C2-functions.

The Cauchy initial value problem for the wave equation is to find a C2-
solution of

1

c2
utt − uxx = 0

u(x, 0) = α(x)

ut(x, 0) = β(x),

where α, β ∈ C2(−∞,∞) are given.

111
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Proposition 4.1. There exists a unique C2(R × R)-solution of the Cauchy
initial value problem, and this solution is given by the d’Alembert’s1 formula

u(x, t) =
α(x + ct) + α(x − ct)

2
+

1

2c

∫ x+ct

x−ct

β(s) ds. (4.3)

Proof. Assume there is a solution u(x, t) of Cauchy inititial value problem,
then it follows from (4.2)

u(x, 0) = f(x) + g(x) = α(x) (4.4)

ut(x, 0) = cf ′(x) − cg′(x) = β(x). (4.5)

From (4.4) it follows
f ′(x) + g′(x) = α′(x),

which implies, together with (4.5),

f ′(x) =
α′(x) + β(x)/c

2

g′(x) =
α′(x) − β(x)/c

2
.

Thus,

f(x) =
α(x)

2
+

1

2c

∫ x

0

β(s) ds + C1

g(x) =
α(x)

2
− 1

2c

∫ x

0

β(s) ds + C2.

The constants C1, C2 satisfy

C1 + C2 = f(x) + g(x) − α(x) = 0,

see (4.4). Thus each C2-solution of the Cauchy initial is given by d’Alembert’s
formula. On the other hand, the function u(x, t) defined by the right hand
side of (4.3) is a solution of the initial value problem. 2

Corollaries. 1. The solution u(x, t) of the initial value problem depends on
the values of α at the endpoints of the interval [x− ct, x+ ct] only and on the
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x+ct=const.

t

xx                             x  +ct    x  −ct

(x  ,t  )0 0

0 0 000

Figure 4.1: Interval of dependence

values of β on this interval only, see Figure 4.1. The intervall [x − ct, x + ct]
is called domain of dependence.

2. Let P be a point on the x-axis. Then we ask which points (x, t) need
values of α or β at P in order to calculate u(x, t)? From d’Alembert formula
it follows that this domain is a cone, see Figure 4.2. This set is called domain
of influence.

t

x

P

x−ct=const.

Figure 4.2: Domain of influence

1d’Alembert, Jean Babtiste le Rond, 1717-1783



114 CHAPTER 4. HYPERBOLIC EQUATIONS

4.2 Higher dimensions

Set
2u = utt − c24u, 4 ≡ 4x = ∂2/∂x2

1 + . . . + ∂2/∂x2
n,

and consider the initial value problem

2u = 0 in R
n × R (4.6)

u(x, 0) = f(x) (4.7)

ut(x, 0) = g(x), (4.8)

where f and g are given C2(R2)-functions.
By using spherical means and the above d’Alembert formula we will derive

a formula for the solution of this inital value problem.

Method of spherical means

Define the spherical mean for a C2-solution u(x, t) of the initial value problem
by

M(r, t) =
1

ωnrn−1

∫

∂Br(x)

u(y, t) dSy, (4.9)

where
ωn = (2π)n/2/Γ(n/2)

is the area of the n-dimensional sphere, ωnr
n−1 is the area of a sphere with

radius r.
From the mean value theorem of the integral calculus we obtain the func-

tion u(x, t) for which we are looking at by

u(x, t) = lim
r→0

M(r, t). (4.10)

Using the initial data, we have

M(r, 0) =
1

ωnrn−1

∫

∂Br(x)

f(y) dSy =: F (r) (4.11)

Mt(r, 0) =
1

ωnrn−1

∫

∂Br(x)

g(y) dSy =: G(r), (4.12)

which are the spherical means of f and g.
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The next step is to derive a partial differential equation for the spherical
mean. From definition (4.9) of the spherical mean we obtain, after the map-
ping ξ = (y − x)/r, x and r fixed,

M(r, t) =
1

ωn

∫

∂B1(0)

u(x + rξ, t) dSξ.

It follows

Mr(r, t) =
1

ωn

∫

∂B1(0)

n∑

i=1

uyi
(x + rξ, t)ξi dSξ

=
1

ωnrn−1

∫

∂Br(x)

n∑

i=1

uyi
(y, t)ξi dSy.

Integration by parts implies

1

ωnrn−1

∫

Br(x)

n∑

i=1

uyiyi
(y, t) dy

since ξ ≡ (y − x)/r is the exterior normal at ∂Br(x). Assume u is a solution
of the wave equation, then

rn−1Mr =
1

c2ωn

∫

Br(x)

utt(y, t) dy

=
1

c2ωn

∫ r

0

∫

∂Bc(x)

utt(y, t) dSydc.

The previous equation follows by using spherical coordinates. Consequently,

(rn−1Mr)r =
1

c2ωn

∫

∂Br(x)

utt(y, t) dSy

=
rn−1

c2

∂2

∂t2

(
1

ωnrn−1

∫

∂Br(x)

u(y, t) dSy

)

=
rn−1

c2
Mtt.

Thus, we arrive at differential equation

(rn−1Mr)r = c−2rn−1Mtt,

which can be written as

Mrr +
n − 1

r
Mr = c−2Mtt. (4.13)

This equation (4.13) is called Euler-Poisson-Darboux equation.
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4.2.1 Case n=3

The Euler-Poisson-Darboux-equation in this case is

(rM)rr = c−2(rM)tt.

That is, rM is the solution of the one-dimensional wave equation with initial
data

(rM)(r, 0) = rF (r) (rM)t(r, 0) = rG(r). (4.14)

From the d’Alembert formula we get formally

M(r, t) =
(r + ct)F (r + ct) + (r − ct)F (r − ct)

2r

+
1

2cr

∫ r+ct

r−ct

ξG(ξ) dξ. (4.15)

The right hand side of previous formula is well defined if the domain of
dependence [x− ct, x + ct] is a subset of (0,∞). We can extend F and G for
all real numbers to F0 and G0 such that rF0 and rG0 are C2(R)-functions.
Set

F0(r) =





F (r) : r > 0
f(x) : r = 0

F (−r) : r < 0

The function G0(r) is given by the same definition where F and f are replaced
by G and g, respectively.

Lemma. rF0(r), rG0(r) ∈ C2(R2).

Proof. From definition of F (r) and G(r), r > 0, it follows from the mean
value theorem

lim
r→+0

F (r) = f(x), lim
r→+0

G(r) = g(x).

Thus, rF0(r) and rG0(r) are C(R)-functions. These functions are also in



4.2. HIGHER DIMENSIONS 117

C1(R). This follows since F0 and G0 are in C1(R), for example,

F ′(r) =
1

ωn

∫

∂B1(0)

n∑

j=1

fyj
(x + rξ)ξj dSξ

F ′(+0) =
1

ωn

∫

∂B1(0)

n∑

j=1

fyj
(x)ξj dSξ

=
1

ωn

n∑

j=1

fyj
(x)

∫

∂B1(0)

nj dSξ

= 0.

Then, rF0(r) and rG0(r) are in C2(R), provided F ′′ and G′′ are bounded as
r → +0. This property follows from

F ′′(r) =
1

ωn

∫

∂B1(0)

n∑

i,j=1

fyiyj
(x + rξ)ξiξj dSξ.

Thus

F ′′(+0) =
1

ωn

n∑

i,j=1

fyiyj
(x)

∫

∂B1(0)

ninj dSξ.

We recall that f, g ∈ C2(R2) by assumption. 2

The solution of the above initial value problem where F and G are replaced
by F0 and G0, respectively, is

M0(r, t) =
(r + ct)F0(r + ct) + (r − ct)F0(r − ct)

2r

+
1

2cr

∫ r+ct

r−ct

ξG0(ξ) dξ.

Since F0 and G0 are even functions, we have
∫ ct−r

r−ct

ξG0(ξ) dξ = 0.

Thus,

M0(r, t) =
(r + ct)F0(r + ct) − (ct − r)F0(ct − r)

2r

+
1

2cr

∫ ct+r

ct−r

ξG0(ξ) dξ, (4.16)
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see Figure 4.3. For fixed t > 0 and 0 < r < ct it follows that M0(r, t) is

ct+rr−ct ct−r

Figure 4.3: Changed domain of integration

the solution of the initial value problem with initially given data (4.14) since
F0(s) = F (s), G0(s) = G(s) if s > 0. Since for fixed t > 0

u(x, t) = lim
r→0

M0(r, t),

it follows from d’Hospital’s rule that

u(x, t) = ctF ′(ct) + F (ct) + tG(ct)

=
d

dt
(tF (ct)) + tG(ct).

Proposition 4.2. Assume f ∈ C3(R3) and g ∈ C2(R3) are given. Then
there exist a unique solution u ∈ C2(R3 × [0,∞)) of the initial value prob-
lem (4.6)- (4.7), where n = 3, and the solution is given by the Poisson’s
formula

u(x, t) =
1

4πc2

∂

∂t

(
1

t

∫

∂Bct(x)

f(y) dSy

)

+
1

4πc2t

∫

∂Bct(x)

g(y) dSy. (4.17)

Proof. Above we have shown that a C2-solution is given by Poisson’s formula.
Under the additional assumption f ∈ C3 it follows from Poisson’s formula
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that this formula defines a solution which is in C2, see F. John [8], p. 129.
2

Corollary. It follows from Poisson’s formula that the domain of dependence
for u(x, t0) is the intersection of the cone defined by |y − x| = c|t − t0| with
the hyperplane defined by t = 0, see Figure 4.4

t

x

(x,t  )0

|y−x|=c| t−t |0

Figure 4.4: Domain of dependence, case n = 3

4.2.2 Case n = 2

Consider the initial value problem

vxx + vyy = c−2vtt (4.18)

v(x, y, 0) = f(x, y) (4.19)

vt(x, y, 0) = g(x, y), (4.20)

where f ∈ C3, g ∈ C2.
Using the formula for the solution of the tree-dimensinal inital value prob-

lem we will derive a formula for the two-dimensional case. The following
consideration is called Hadamard’s method of decent.
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Let v(x, y, t) be a solution of (4.18)-(4.20), then

u(x, y, z, t) := v(x, y, t)

is a solution of the three-dimensional initial value problem with initial data
f(x, y), g(x, y), independent of z, since u satisfies (4.18)-(4.20). Hence, since
u(x, y, z, t) = u(x, y, 0, t) + uz(x, y, δz, t)z, 0 < δ < 1, and uz = 0, we have

v(x, y, t) = u(x, y, 0, t).

Poisson’s formula in the three dimensional case implies

v(x, y, t) =
1

4πc2

∂

∂t

(
1

t

∫

∂Bct(x,y,0)

f(ξ, η) dS

)

+
1

4πc2t

∫

∂Bct(x,y,0)

g(ξ, η) dS. (4.21)

n
dS

S

_

+

S

r

ξ

η

ζ

ηdξd

Figure 4.5: Domains of integration

The integrands are independent of ζ. The surface S is defined by χ(ξ, η, ζ) :=
(ξ − x)2 + (η − y)2 + ζ2 − c2t2 = 0. Then the exterior normal n at S is



4.2. HIGHER DIMENSIONS 121

n = ∇χ/|∇χ| and the surface element is given by dS = (1/|n3|)dξdη, where
the third coordinate of n is

n3 = ±
√

c2t2 − (ξ − x)2 − (η − y)2

ct
.

The positive sign applies on S+, where ζ > 0 and sign is negative on S−

where ζ < 0, see Figure 4.5. We have S = S+ ∪ S−.

Set ρ =
√

(ξ − x)2 + (η − y)2. Then it follows from (4.21)

Proposition 4.3. The solution of the Cauchy initial value problem (4.18)-
(4.20) is given by

v(x, y, t) =
1

2πc

∂

∂t

∫

Bct(x,y)

f(ξ, η)√
c2t2 − ρ2

dξdη

+
1

2πc

∫

Bct(x,y)

g(ξ, η)√
c2t2 − ρ2

dξdη.

t

x

(x,t  )0

|y−x|=c| t−t |0

Figure 4.6: Interval of dependence, case n = 2
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Corollary. In contrast to the three dimensional case, the domain of depen-
dence is here the disk Bcto(x0, y0) and not the boundary only, see Figure 4.6.
Therefore, see formula of Proposition 4.3, if f, g have supports in a compact
domain D ⊂ R

2, then these functions have influence on the value v(x, y, t)
for all time t > T , T sufficiently large.

4.3 Inhomogeneous equation

Here we consider the initial value problem

2u = w(x, t) on x ∈ R
n, t ∈ R (4.22)

u(x, 0) = f(x) (4.23)

ut(x, 0) = g(x), (4.24)

where 2u := utt − c24u. We assume f ∈ C3, g ∈ C2 and w ∈ C1, which are
given.

Set u = u1 + u2, where u1 is a solution of problem (4.22)-(4.24) where
w := 0 and u2 is the solution where f = 0 and g = 0 in (4.22)-(4.24). Since
we have explicit solutions u1 in the cases n = 1, n = 2 and n = 3, it remains
to solve

2u = w(x, t) on x ∈ R
n, t ∈ R (4.25)

u(x, 0) = 0 (4.26)

ut(x, 0) = 0. (4.27)

The following method is called Duhamel’s principle which can be considered
as a generalization of the method of variations of constants in the theory of
ordinary differential equations.

To solve this problem, we make the ansatz

u(x, t) =

∫ t

0

v(x, t, s) ds, (4.28)

where v is a function satisfying

2v = 0 for all s (4.29)

and
v(x, s, s) = 0. (4.30)
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From ansatz (4.28) and assumption (4.30) we get

ut = v(x, t, t) +

∫ t

0

vt(x, t, s) ds,

=

∫ t

0

vt(x, t, s). (4.31)

It follows ut(x, 0) = 0. Initial condition u(x, t) = 0 is satisfied because of the
ansatz (4.28). From (4.31) and ansatz (4.28) we see that

utt = vt(x, t, t) +

∫ t

0

vtt(x, t, s) ds

4xu =

∫ t

0

4xv(x, t, s) ds.

Therefore, since u is an ansatz for (4.25)-(4.27),

utt − c24xu = vt(x, t, t) +

∫ t

0

(2v)(x, t, s) ds

= w(x, t).

Thus, necessarily vt(x, t, t) = w(x, t), see (4.29). We have seen that the
ansatz provides a solution of (4.25)-(4.27) if for all s

2v = 0, v(x, s, s) = 0, vt(x, s, s) = w(x, s). (4.32)

Let v∗(x, t, s) be a solution of

2v = 0, v(x, 0, s) = 0, vt(x, 0, s) = w(x, s), (4.33)

then
v(x, t, s) := v∗(x, t − s, s)

is a solution of (4.32). In the case n = 3, v∗ is given by, see Proposition 4.2,

v∗(x, t, s) =
1

4πc2t

∫

∂Bct(x)

w(ξ, s) dSξ.

Then

v(x, t, s) = v∗(x, t − s, s)

=
1

4πc2(t − s)

∫

∂Bc(t−s)(x)

w(ξ, s) dSξ.
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according to ansatz (4.28) it follows

u(x, t) =

∫ t

0

v(x, t, s) ds

=
1

4πc2

∫ t

0

∫

∂Bc(t−s)(x)

w(ξ, s)

t − s
dSξds.

Changing variables by τ = c(t − s) yields

u(x, t) =
1

4πc2

∫ ct

0

∫

∂Bτ (x)

w(ξ, t − τ/c)

τ
dSξdτ

=
1

4πc2

∫

Bct(x)

w(ξ, t − r/c)

r
dξ,

where r = |x − ξ|.
Formulae for the cases n = 1 and n = 2 follow from formulae for the

associated homogeneous equation with inhomogeneous initial values for these
cases.

Proposition 4.4. The solution of

2u = w(x, t), u(x, 0) = 0, ut(x, 0) = 0,

where w ∈ C1, is given by:

Case n = 3:

u(x, t) =
1

4πc2

∫

Bct(x)

w(ξ, t − r/c)

r
dξ,

where r = |x − ξ|, x = (x1, x2, x3), ξ = (ξ1, ξ2, ξ3).

Case n = 2:

u(x, t) =
1

4πc

∫ t

0

(∫

Bc(t−τ)(x)

w(ξ, τ)√
c2(t − τ)2 − r2

dξ

)
dτ,

x = (x1, x2), ξ = (ξ1, ξ2).

Case n = 1:

u(x, t) =
1

2c

∫ t

0

(∫ x+c(t−τ)

x−c(t−τ)

w(ξ, τ) dξ

)
dτ.
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Remark. The integrand on the right in formula for n = 3 is called retarded
potential. The integand is taken not at t, it is taken at an earlier time t−r/c.

4.4 Method of Riemann

Riemann’s method provides a formula for the solution of the following Cauchy
initial value problem for a hyperbolic equation of second order in two vari-
ables. Let

S : x = x(t), y = y(t), t1 ≤ t ≤ t2

be a regular curve in R
2, that is, we assume x, y ∈ C1[t1, t2] and x′2+y′2 6= 0.

Set
Lu := uxy + a(x, y)ux + b(x, y)uy + c(x, y)u,

where a, b ∈ C1 and c, f ∈ C in a neighbourhood of S. Consider the initial
value problem

Lu = f(x, y) (4.34)

u0(t) = u(x(t), y(t)) (4.35)

p0(t) = ux(x(t), y(t)) (4.36)

q0(t) = uy(x(t), y(t)), (4.37)

where f ∈ C in a neighbourhood of S and u0, p0, q0 ∈ C1 are given.
We assume

(i) u′
0(t) = p0(t)x

′(t) + q0(t)y
′(t) (strip condition),

(ii) S is not a characteristic curve. Moreover it is assumed that the char-
acteristic curves, which are lines here and are defined by x = const. and
y = const., have at most one point of intersection with S, and such a point
is not a touching point, that is, tangents of the characteristic and S are
different at this point.

We recall that the characteristic equation to (4.34) is χxχy = 0 which is sat-
isfied if χx(x, y) = 0 or χy(x, y) = 0. One family of characteristics associated
to the first partial differential of first order is defined by x′(t) = 1, y′(t) = 0,
see Chapter 2.
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Asssume u, v ∈ C1 and uxy, vxy exist and are continuous. Define the adjoint
differential expression by

Mv = vxy − (av)x − (bv)y + cv.

By calculation we have

2(vLu − uMv) = (uxv − vxu + 2buv)y + (uyv − vyu + 2auv)x. (4.38)

Set

P = −(uxv − xxu + 2buv)

Q = uyv − vyu + 2auv

From (4.38) it follows for a domain Ω ∈ R
2

2

∫

Ω

(vLu − uMv) dxdy =

∫

Ω

(−Py + Qx) dxdy

=

∮
Pdx + Qdy. (4.39)

Here integration in the line integral is anticlockwise. The previous equation
follows from Gauss theorem or after integration by parts:

∫

Ω

(−Py + Qx) dxdy =

∫

∂Ω

(−Pn2 + Qn1) ds,

where n = (dy/ds,−dx/ds), s arc length, (x(s), y(s)) represents ∂Ω.
Assume u is a solution of initial value problem (4.34)-(4.37) and suppose

that v satisfies
Mv = 0 in Ω.

Then, if we integrate over a domain Ω as shown in Figure 4.7, it follows
from (4.39) that

2

∫

Ω

vf dxdy =

∫

BA

Pdx+Qdy+

∫

AP

Pdx+Qdy+

∫

PB

Pdx+Qdy. (4.40)

The line integral from B to A is known from initial data, see the definition
of P and Q.

Since
uxv − vxu + 2buv = (uv)x + 2u(bv − vx),
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A

B

S

Ω

x

y

0
P=(x  ,y  )

0

Figure 4.7: Riemann’s method, domain of integration

it follows∫

AP

Pdx + Qdy = −
∫

AP

((uv)x + 2u(bv − vx)) dx

= −(uv)(P ) + (uv)(A) −
∫

AP

2u(bv − vx) dx.

By the same reasoning we obtain for the third line integral
∫

PB

Pdx + Qdy =

∫

PB

((uv)y + 2u(av − vy)) dy

= (uv)(B) − (uv)(P ) +

∫

PB

2u(av − vy) dy.

Combining these equations with (4.39), we get

2v(P )u(P ) =

∫

BA

(uxv − vx + 2buv) dx − (uyv − vyu + 2auv) dy

+u(A)v(A) + u(B)v(B) + 2

∫

AP

u(bv − vx) dx

+2

∫

PB

u(av − vY ) dy − 2

∫

Ω

fv dxdy. (4.41)

Let v be a solution of the initial value problem, see Figure 4.8 for the
definition of domain D(P ),
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x

y

0
P=(x  ,y  )

0
C

C
2

1

D(P)

Figure 4.8: Definition of Riemann’s function

Mv = 0 in D(P ) (4.42)

bv − vx = 0 on C1 (4.43)

av − vy = 0 on C2 (4.44)

v(P ) = 1. (4.45)

Proposition 4.5. Assume v satisfies (4.42)-(4.45), then

2u(P ) = u(A)v(A) + u(B)v(B) − 2

∫

Ω

fv dxdy

=

∫

BA

(uxv − vx + 2buv) dx − (uyv − vyu + 2auv) dy,

where the right hand side is known from given data.

A function v = v(x, y; x0, y0) satisfying (4.42)-(4.45) is called Riemann’s func-
tion.

Remark. Set w(x, y) = v(x, y; x0, y0) for fixed x0, y0. Then (4.42)-(4.45)
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imply

w(x, y0) = exp

(∫ x

x0

b(τ, y0) dτ

)
on C1

w(x0, y) = exp

(∫ y

y0

a(x0, τ) dτ

)
on C2.

Examples

1. uxy = f(x, y), then a Riemann function is v(x, y) ≡ 1.

2. Consider telegraph equation of Chapter 3

εµutt = c24xu − λµut,

where u stands for one coordinate of electic or magnatic field. Introducing

u = w(x, t)eκt,

where κ = −λ/(2ε), we arrive at

wtt =
c2

εµ
4xw − λ2

4ε2
.

Stretching the axis and transform the equation to the normal form we get
finally the following equation, the new function is denoted by u and the new
variables are denoted by x, y again,

uxy + cu = 0,

with a positive constant c. We make the ansatz for a Riemann function

v(x, y; x0, y0) = w(s), s = (x − x0)(y − y0)

and obtain
sw′′ + w′ + cw = 0.

Substituation σ =
√

4cs leads to Bessel’s differential equation

σ2z′′(σ) + σz′(σ) + σ2z(σ) = 0,
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where z(σ) = w(σ2/(4c)). A solution is

J0(σ) = J0

(√
4c(x − x0)(y − y0)

)

which defines a Riemann function since J0(0) = 1.

Remark. Bessel’s differential equation is

x2y′′(x) + xy′(x) + (x2 − n2)y(x) = 0,

where n ∈ R. If n ∈ N ∪ {0}, then solutions are given by Bessel functions
Jn(x) of first kind and of order n, see for example [1].

4.5 Initial-boundary value problems

In previous sections we looked at solutions defined for all x ∈ R
n and t ∈ R.

In this and in the following section we seek solutions u(x, t) defined in a
bounded domain Ω ⊂ R

n and for all t ∈ R and which satisfy additional
boundary conditions on ∂Ω.

4.5.1 Oscillation of a string

Let u(x, t), x ∈ [a, b], t ∈ R, be the deflection of a string, see Figure 1.4 from
Chapter 1. Assume the deflection occurs in the (x, u)-plane. This problem
is governed by the initial-boundary value problem

utt(x, t) = uxx(x, t) on (0, l) (4.46)

u(x, 0) = f(x) (4.47)

ut(x, 0) = g(x) (4.48)

u(0, t) = u(l, t) = 0. (4.49)

Assume the initial data f , g are sufficiently regular. This implies compati-
bility conditions f(0) = f(l) = 0 and g(0) = g(l).

Fourier’s method

To find solutions of differential equation (4.46) we make the separation of
variables ansatz

u(x, t) = v(x)w(t).
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Inserting the ansatz into (4.46) we obtain

v(x)w′′(t) = v′′(x)w(t),

or, if v(x)w(t) 6= 0,
w′′(t)

w(t)
=

v′′(x)

v(x)
.

It follows, provided v(x)w(t) is a solution of differential equation (4.46) and
v(x)w(t) 6= 0,

w′′(t)

w(t)
= const. =: −λ

and
v′′(x)

v(x)
= −λ

since x, t are independent variables.
Assume v(0) = v(l) = 0, then v(x)w(t) satisfies the boundary condi-

tion (4.49). Thus, we look for solutions of the eigenvalue problem

−v′′(x) = λv(x) in (0, l) (4.50)

v(0) = v(l) = 0, (4.51)

which has the eigenvalues

λn =
(π

l
n
)2

, n = 1, 2, . . . ,

and associated eigenfunctions are

vn = sin
(π

l
nx

)
.

Solutions of

−w′′(t) = λnw(t)

are

sin(
√

λnt), cos(
√

λnt).

Set

wn(t) = αn cos(
√

λnt) + βn sin(
√

λnt),
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where αn, βn ∈ R. It is easily seen that wn(t)vn(x) is a solution of differential
equation (4.46), and, since (4.46) is linear and homogeneous, also (principle
of superposition)

uN =
N∑

n=1

wn(t)vn(x)

which satisfies differential equation (4.46) and boundary conditions (4.49).
Consider the formal solution of (4.46), (4.49)

u(x, t) =
∞∑

n=1

(
αn cos(

√
λnt) + βn sin(

√
λnt)

)
sin

(√
λnx

)
. (4.52)

”Formal” means that we know here neither that the right hand side converges
nor that it is a solution. Formally, the unknown coefficients can be calculated
from initial conditions (4.47), (4.48) as follows. We have

u(x, 0) =
∞∑

n=1

αn sin(
√

λnx) = f(x).

Multiplying this equation by sin(
√

λkx) and integrate over (0, l), we get

αn

∫ l

0

sin2(
√

λkx) dx =

∫ l

0

f(x) sin(
√

λkx) dx.

We recall that ∫ l

0

sin(
√

λnx) sin(
√

λkx) dx =
l

2
δnk.

Then

αk =
2

l

∫ l

0

f(x) sin

(
πk

l
x

)
dx. (4.53)

By the same argument it follows from

ut(x, 0) =
∞∑

n=1

βn

√
λn sin(

√
λnx) = g(x)

that

βk =
2

kπ

∫ l

0

g(x) sin

(
πk

l
x

)
dx. (4.54)
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Under the additional assumptions f ∈ C4
0(0, l), g ∈ C3

0(0, l) it follows that
the right hand side of (4.52), where αn, βn are given by (4.53) and (4.54),
respectively, defines a classical solution of (4.46)-(4.49), see an exercise, since
under these assumptions the series for u and the formal differentiate series
for ut, utt, ux, uxx converges uniformly on 0 ≤ x ≤ l, 0 ≤ t ≤ T , 0 < T < ∞
fixed.

4.5.2 Oscillation of a membran

Let Ω ⊂ R
2 be a bounded domain. We consider the initial-boundary value

problem

utt(x, t) = 4xu in Ω × R, (4.55)

u(x, 0) = f(x), x ∈ Ω, (4.56)

ut(x, 0) = g(x), x ∈ Ω, (4.57)

u(x, t) = 0 on ∂Ω × R. (4.58)

As in the previous subsection for the string, we make the ansatz (separation
of variables)

u(x, t) = w(t)v(x)

which leads to the eigenvalue problem

−4v = λv in Ω, (4.59)

v = 0 on ∂Ω. (4.60)

Let λn are the eigenvalues of (4.59), (4.60) and vn a complete associated or-
thonormal system of eigenfunctions. We assume Ω is sufficiently regular such
that the einvalues are countable, which is satisfied in the following examples.
Then the formal solution of the above initial-boundary value problem is

u(x, t) =
∞∑

n=1

(
αn cos(

√
λnt) + βn sin(

√
λnt)

)
vn(x),

where

αn =

∫

Ω

f(x)vn(x) dx

βn =
1√
λn

∫

Ω

g(x)vn(x) dx.
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Remark. In general, eigenvalues of (4.59), (4.59) are not known explicitely.
There are numerical methods to calculate these values. In some special cases,
see next examples, these values are known.

4.5.3 Examples

1. Rectangle membran. Let

Ω = (0, a) × (0, b).

Using the method of separation of variables, we find all eigenvalues of (4.59), (4.60)
which are given by

λkl =

√
k2

a2
+

l2

b2
, k, l = 1, 2, . . .

and associated eigenfunctions, not normalized, are

ukl(x) = sin

(
πk

a
x1

)
sin

(
πl

b
x2

)
.

2. Disk membran. Set

Ω = {x ∈ R
2 : x2

1 + x2
2 < R2}.

In polar coordinates, eigenvalue problem (4.59), (4.60) is given by

−1

r

(
(rur)r +

1

r
uθθ

)
= λu (4.61)

u(R, θ) = 0, (4.62)

here is u = u(r, θ) := v(r cos θ, r sin θ). We will find eigenvalues and eigen-
functions by separation of variables

u(r, θ) = v(r)q(θ),

where v(R) = 0 and q(θ) is periodic with period 2π since u(r, θ) is single
valued. This leads to

−1

r

(
(rv′)′q +

1

r
vq′′

)
= λvq.
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Dividing by vq, provided vq 6= 0, we obtain

−1

r

(
(rv′(r))′

v(r)
+

1

r

q′′(θ)

q(θ)

)
= λ, (4.63)

which implies
q′′(θ)

q(θ)
= const. =: −µ.

Thus, we arrive at the eigenvalue problem

−q′′(θ) = µq(θ)

q(θ) = q(θ + 2π).

It follows that eigenvalues µ are real and nonnegative. All solutions of the
differential equation are given by

q(θ) = A sin(
√

µθ) + B cos(
√

µθ),

where A, B are arbitrary real constants. From the periodicity requirement

A sin(
√

µθ) + B cos(
√

µθ) = A sin(
√

µ(θ + 2π)) + B cos(
√

µ(θ + 2π))

it follows2

sin(
√

µπ) (A cos(
√

µθ +
√

µπ) − B sin(
√

µθ +
√

µπ)) = 0,

which implies, since A, B are not zero simultaneously because we are looking
for q not identically zero,

sin(
√

µπ) sin(
√

µθ + δ) = 0

for all θ and a δ = δ(A,B, µ). Consequenttly, the eigenvalues are

µn = n2, n = 0, 1, . . . .

2

sin x − sin y = 2 cos
x + y

2
sin

x − y

2

cos x − cos y = −2 sin
x + y

2
sin

x − y

2
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Inserting q′′(θ)/q(θ) = −n2 into (4.63), we obtain the boundary value prob-
lem

r2v′′(r) + rv′(r) + (λr2 − n2)v = 0 on (0, R) (4.64)

v(R) = 0 (4.65)

sup
r∈(0,R)

|v(r)| < ∞. (4.66)

Set z =
√

λr and v(r) = v(z/
√

λ) =: y(z), then, see (4.64),

z2y′′(z) + zy′(z) + (z2 − n2)y(z) = 0,

where z > 0. Solutions of this differential equations which are bounded at
zero are Bessel functions of first kind and n-th order Jn(z). The eigenvalues
follows from boundary condition (4.65), that is, from Jn(

√
λR) = 0. Let τnk

the zeros of Jn(z), then the eigenvalues of (4.61)-(4.61) are

λnk =
(τnk

R

)2

and the associated eigenfunctions are

Jn(
√

λnkr) sin(nθ), n = 1, 2, . . .

Jn(
√

λnkr) cos(nθ), n = 0, 1, 2, . . . .

That is, the eigenvalues λ0k are simple and λnk, n ≥ 1 are double eigenvalues.

Remark. For tables with zeros of Jn(x) and for much more properties of
Bessel functions see [21]. One has, in particular, the asymptotic formula

Jn(x) =

(
2

πx

)1/2 (
cos(x − nπ/2 − π/5) + O

(
1

x

))

as x → ∞. It follows from this formula that there are infinitely many zeros
of Jn(x).
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4.5.4 Inhomogeneous wave equations

Let Ω ⊂ R
n be a bounded and sufficiently regular domain. In this section we

consider the initial-boundary value problem

utt = Lu + f(x, t) in Ω × R (4.67)

u(x, 0) = φ(x) (4.68)

ut(x, 0) = ψ(x) (4.69)

u(x, t) = 0 for x ∈ ∂Ω and t ∈ R
n, (4.70)

where u = u(x, t), x = (x1, . . . , xn), f, φ, ψ are given and L is an elliptic
differential operator. Examples for L are:

1. L = ∂2/∂x2, oscillating string.

2. L = 4x, oscillating membran.

3.

Lu =
n∑

i,j=1

∂

∂xj

(
aij(x)uxi

)
,

where aij = aji are given sufficiently regular functions defined on Ω. We
assume L is uniformly elliptic, that is, there is a constant ν > 0 such that

n∑

i,j=1

aijζiζj ≥ ν|ζ|2

for all x ∈ Ω and ζ ∈ R
n.

4. Let u = (u1, . . . , um) and

Lu =
n∑

i,j=1

∂

∂xj

(
Aij(x)uxi

)
,

where Aij = Aji are given sufficiently regular m × m matrices on Ω. We
assume that L defines an elliptic system. An example for this case is the
linear elasticity.
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Conside the eigenvalue problem

−Lv = λv in Ω (4.71)

v = 0 on ∂Ω. (4.72)

Assume there are infinitely many eigenvalues

0 < λ1 ≤ λ2 ≤ . . . → ∞

and a system of associated eigenfunctions v1, v2, . . . which is complete and
orthonormal in L2(Ω). This assumption is satisfied if Ω is bounded and if
∂Ω is sufficiently regular.

For the solution of (4.67)-(4.70) we make the ansatz

u(x, t) =
∞∑

k=1

vk(x)wk(t), (4.73)

with functions wk(t) which will be determined later. It is assumed that all
series are convergent and that following calculations make sense. Let

f(x, t) =
∞∑

k=1

ck(t)vk(x) (4.74)

be Fourier’s decomposition of f with respect to the eigenfunctions vk. It is

ck(t) =

∫

Ω

f(x, t)vk(x) dx, (4.75)

which follows from (4.74) after multiplying with vl(x) and integrating over
Ω.

Set

〈φ, vk〉 =

∫

Ω

φ(x)vk(x) dx,

then

φ(x) =
∞∑

k=1

〈φ, vk〉vk(x)

ψ(x) =
∞∑

k=1

〈ψ, vk〉vk(x)
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are Fourier’s decomposition of φ and ψ, respectively.
In the following we will determine wk(t), which occurs in ansatz (4.73),

from the requirement that u = vk(x)wk(t) is a solution of

utt = Lu + ck(t)vk(x)

and that the initial conditions

wk(0) = 〈φ, vk〉, w′
k(0) = 〈ψ, vk〉

are satisfied. From the above differential equation it follows

w′′
k(t) = −λkwk(t) + ck(t).

Thus,

wk(t) = ak cos(
√

λkt) + bk sin(
√

λkt) (4.76)

+
1√
λk

∫ t

0

ck(τ) sin(
√

λk(t − τ)) dτ,

where

ak = 〈φ, vk〉, bk =
1√
λk

〈ψ, vk〉.

Summarizing, we have

Proposition 4.6. The (formal) solution of the initial-boundary value prob-
lem (4.67)-(4.70) is given by

u(x, t) =
∞∑

k=1

vk(x)wk(t),

where vk is a complete orthonormal system of eigenfunctions of (4.71), (4.72)
and the functions wk are defined by (4.76).

The resonance phenomenon

Set in (4.67)-(4.70) φ = 0, ψ = 0 and assume that the external force f is
periodic and is given by

f(x, t) = A sin(ωt)vn(x),
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where A, ω are real constants and vn is one of the eigenfunctions of (4.71), (4.72).
It follows

ck(t) =

∫

Ω

f(x, t)vk(x) dx = Aδnk sin(ωt).

Then the solution of the initial value problem (4.67)-(4.70) is

u(x, t) =
Avn(x)√

λn

∫ t

0

sin(ωτ) sin(
√

λn(t − τ)) dτ

= Avn(x)
1

ω2 − λn

(
ω√
λn

sin(
√

λkt) − sin(ωt)

)
,

provided ω 6=
√

λn. It follows

u(x, t) → A

2
√

λn

vn(x)

(
sin(

√
λnt)√

λn

− t cos(
√

λnt)

)

if ω →
√

λn. The right hand side is also the solution of the initial-boundary
value problem if ω =

√
λn.

Consequently, |u| can be arbitrarily large in some points x and at some
times t if ω =

√
λn. The frequencies

√
λn are called critical frequencies at

which resonance occurs.

A uniqueness result

The solution of of the initial-boundary value problem (4.67)-(4.70) is unique
in the class C2(Ω × R).

Proof. Let u1, u2 are two solutions, then u = u2 − u1 satisfies

utt = Lu in Ω × R

u(x, 0) = 0

ut(x, 0) = 0

u(x, t) = 0 for x ∈ ∂Ω and t ∈ R
n.

As an example we consider Example 3 from above and set

E(t) =

∫

Ω

(
n∑

i,j=1

aij(x)uxi
uxj

+ utut) dx.
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Then

E ′(t) = 2

∫

Ω

(
n∑

i,j=1

aij(x)uxi
uxjt + ututt) dx

= 2

∫

∂Ω

(
n∑

i,j=1

aij(x)uxi
utnj) dS

+2

∫

Ω

ut(−Lu + utt) dx

= 0.

It follows E(t) = const. From ut(x, 0) = 0 and u(x, 0) = 0 we get E(0) =
0. Consequently E(t) = 0 for all t, which implies, since L is elliptic, that
u(x, t) = const. on Ω × R. Finally, the homogeneous initial and boundary
value conditions lead to u(x, t) = 0 on Ω × R.
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4.6 Exercises

1. Show that u(x, t) ∈ C2(R2) is a solution of the one-dimensional wave
equation

utt = c2uxx

if and only if
u(A) + u(C) = u(B) + u(D)

holds for all parallelograms ABCD in the (x, t)-plane, which are bounded
by charakteristic lines, see Figure 4.9.

x

t

B

C

A

D

Figure 4.9: Figure to exercise

2. Method of separation of variables: Let vk(x) be an eigenfunction to the
eigenvalue of the eigenvalue problem −v′′(x) = λv(x) in (0, l), v(0) =
v(l) = 0 and let wk(t) be a solution of differential equation −w′′(t) =
λkw(t). Prove that vk(x)wk(t) is a solution of the partial differential
equation (wave equation) utt = uxx.

3. Solve for given f(x) and µ ∈ R the initial value problem

ut + ux + µuxxx = 0 in R × R+

u(x, 0) = f(x) .

4. Let S := {(x, t); t = γx} be spacelike, that is, |γ| < 1/c2) in (x, t)-
space, x = (x1, x2, x3). Show that the Cauchy inital value problem
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2(x,t)u = 0 with data for u on S can be transformed by Lorentz-
mapping

x1 =
x1 − γc2t√

1 − γ2c2
, x′

2 = x2, x′
3 = x3, t′ =

t − γx1√
1 − γ2c2

into the initial value problem, in new coordinates,

2(x′,t′)u = 0

u(x′, 0) = f(x′)

ut′(x
′, 0) = g(x′) .

Here we denote the transformed function by u again.

5. a) Show that

u(x, t) :=
∞∑

n=1

αn cos
(πn

l
t
)

sin
(πn

l
x
)

is a C2-solution of the wave equation utt = uxx if |αn| ≤ c/n4, where
the constant c is independent of n.

b) Set

αn :=

∫ l

0

f(x) sin
(πn

l
x
)

dx.

Prove |αn| ≤ c/n4, provided f ∈ C4
0(0, l).

6. Let Ω be the rectangle (0, a)×(0, b). Find all eigenvalues and associated
eigenfunctions of −4u = λu in Ω, u = 0 on ∂Ω.

Hint. Separation of variables.

7. Find a solution of Schrödinger’s equation

i~ψt = − ~
2

2m
4xψ + V (x)ψ ∈ R

n × R,

which satisfies the side condition
∫ n

R

|ψ(x, t)|2dx = 1 ,
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ψ : R
n×R 7→ C, ~ Planck’s constant (a small positive constant), V (x)

given (potential), if E ∈ R (eigenvalue) of the elliptic equation

4u +
2m

~2
(E − V (x))u = 0 in R

n

under the side condition
∫ n

R
|u|2dx = 1, u : R

n 7→ C.

Remark. In the case of a hydrogen atom the potential is V (x) =
−e/|x|, e a positive constant. Then the eigenvalues are given by En =
−me4/(2~

2n2), n ∈ N, see [18], pp. 202.

8. Find non-zero solutions by using separation of variables of utt = 4xu
in Ω × (0,∞), u(x, t) = 0 on ∂Ω, where Ω is the circular cylinder
Ω = {(x1, x2, x3) ∈ R

n : x2
1 + x2

2 < R2, 0 < x3 < h}.

9. Solve the initial value problem

3utt − 4uxx = 0

u(x, 0) = sin x

ut(x, 0) = 1 .

10. Solve the initial value problem

utt − c2uxx = x2, t > 0, x ∈ R

u(x, 0) = x

ut(x, 0) = 0 .

Hint.Find a solution of the differential equation independent of t and,
using this solution, transform the above problen into an initial value
problem with homogeneous differential equation.

11. Find, by using the method of separation of variables, non-zero solutions
u(x, t), 0 ≤ x ≤ 1, 0 ≤ t < ∞, of

utt − uxx + u = 0 ,

such that u(0, t) = 0, und u(1, t) = 0 for all t ∈ [0,∞).
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12. Find solutions of equation

utt − c2uxx = λ2u, λ = const.

which can be written as

u(x, t) = f(x2 − c2t2) = f(s), s := x2 − c2t2

with f(0) = K, K a constant.

Hint.Transform equation for f(s) using the substitution s := z2/A with
an approbriate constant A into Bessel’s differential equation

z2f ′′(z) + zf ′(z) + (z2 − n2)f = 0, z > 0

with n = 0.
Remark. The above differential equation for u is the transformed tele-
graph equation (see Section 4.4).

13. Find the formula for the solution of following Cauchy initial value prob-
lem uxy = f(x, y), where S: y = ax+b, a > 0, and the initial conditions
on S are given by

u = αx + βy + γ,

ux = α,

uy = β,

a, b, α, β, γ constants.

14. Find all eigenvalues µ of

−q′′(θ) = µq(θ)

q(θ) = q(θ + 2π) .
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Chapter 5

Fourier transform

Fourier’s transform is an integral transform which can simplify investigations
for differential equations since it transforms a differential operator into an
algebraic equation.

5.1 Definition, properties

Definition. Let f ∈ Cs
0(R

n), s = 0, 1, . . . . The function f̂ defined by

f̂(ξ) = (2π)−n/2

∫

Rn

e−iξ·xf(x) dx, (5.1)

where ξ ∈ R
n, is called Fourier transform of f , and the function g̃ given by

g̃(x) = (2π)−n/2

∫

Rn

eiξ·xg(ξ) dξ (5.2)

is called inverse Fourier transform, provided the integrals on the right hand
side . exist. From (5.1) it follows by integration by parts that differentiation

of a function is transformed into multiplication of its Fourier transforms,
or an analytical operation is converted into an algebraic operation. More
precisely, we have

Proposition 5.1.

D̂αf(ξ) = i|α|ξαf̂(ξ),

where |α| ≤ s.

147
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The following proposition shows that the Fourier transform of f decreases
rapidly for |ξ| → ∞, provided f ∈ Cs

0(R
n). In particular, the right hand side

of (5.2) exists for g := f̂ if f ∈ Cn+1
0 (Rn).

Proposition 5.2. Assume g ∈ Cs
0(R

n), then there is a constant M =
M(n, s, g) such that

|ĝ(ξ)| ≤ M

(1 + |ξ|)s
.

Proof. Let ξ = (ξ1, . . . , ξn) be fixed and let j be an index such that |ξj| =
maxk |ξk|. Then

|ξ| =

(
n∑

k=1

ξ2
k

)1/2

≤ √
n|ξj|

which implies

(1 + |ξ|)s =
s∑

k=0

(
s

k

)
|ξ|k

≤ 2s

s∑

k=0

nk/2|ξj|k

≤ 2sns/2
∑

|α|≤s

|ξα|.

This inequality and Proposition 5.1 imply

(1 + |ξ|)s|ĝ(ξ)| ≤ 2sns/2
∑

|α|≤s

|(iξ)αĝ(ξ)|

≤ 2sns/2
∑

|α|≤s

∫

Rn

|Dαg(x)| dx =: M.

2

The notation inverse Fourier transform for (5.2) will be justified by

Theorem 5.1.
˜̂
f = f and

̂̃
f = f .

Proof. See [23], for example. We will prove the first assertion

(2π)−n/2

∫

Rn

eiξ·xf̂(ξ) dξ = f(x) (5.3)
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here. The proof of the other relation is left as an exercise. All integrals
appearing in the following exist, see Proposition 5.2 and the special choice
of g.

(i) Formula ∫

Rn

g(ξ)f̂(ξ)eix·ξ dξ =

∫

Rn

ĝ(y)f(x + y) dy (5.4)

follows by direct calculation:

∫

Rn

g(ξ)

(
(2π)−n/2

∫

Rn

e−ix·yf(y) dy

)
eix·ξ dξ

= (2π)−n/2

∫

Rn

(∫

Rn

g(ξ)e−iξ·(y−x) dξ

)
f(y) dy

=

∫

Rn

ĝ(y − x)f(y) dy

=

∫

Rn

ĝ(y)f(x + y) dy.

(ii) Relation

(2π)−n/2

∫

Rn

e−iy·ξg(εξ) dξ = ε−nĝ(y/ε) (5.5)

for each ε > 0 follows after substitution z = εξ in the left hand side of (5.1).

(iii) Equation

∫

Rn

g(εξ)f̂(ξ)eix·ξ dξ =

∫

Rn

ĝ(y)f(x + εy) dy (5.6)

follows from (5.4) and (5.5). Set G(ξ) := g(εξ), then (5.4) implies

∫

Rn

G(ξ)f̂(ξ)eix·ξ dξ =

∫

Rn

Ĝ(y)f(x + y) dy.

Since, see (5.5),

Ĝ(y) = (2π)−n/2

∫

Rn

e−iy·ξg(εξ) dξ

= ε−nĝ(y/ε),
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we arrive finally at
∫

Rn

g(εξ)f̂(ξ) =

∫

Rn

ε−nĝ(y/ε)f(x + y) dy

=

∫

Rn

ĝ(z)f(x + εz) dz.

Letting ε → 0, we get

g(0)

∫

Rn

f̂(ξ)eix·ξ dξ = f(x)

∫

Rn

ĝ(y) dy. (5.7)

Set
g(x) := e−|x|2/2,

then ∫

Rn

ĝ(y) dy = (2π)n/2. (5.8)

Since g(0) = 1, the first assertion of Theorem 5.1 folows from (5.7) and (5.8).
It remains to show (5.8).

(iv) Proof of (5.8). We will show

ĝ(y) : = (2π)−n/2

∫

Rn

e−|x|2/2e−ix·x dx

= e−|y|2/2.

The proof of ∫

Rn

e−|y|2/2 dy = (2π)n/2

is left as an exercise. Since

−
(

x√
2

+ i
y√
2

)
·
(

x√
2

+ i
y√
2

)
= −

( |x|2
2

+ ix · y − |y|2
2

)

it follows
∫

Rn

e−|x|2/2e−ix·y dx =

∫

Rn

e−η2

e−|y|2/2 dx

= e−|y|2/2

∫

Rn

e−η2

dx

= 2n/2e−|y|2/2

∫

Rn

e−η2

dη
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where

η :=
x√
2

+ i
y√
2
.

Consider first the one-dimensional case. According Cauchy’s theorem we
have ∮

C

e−η2

dη = 0,

where the integration is along the curve C which is the union of four curves
as indicated in Figure 5.1.

Re

Im

C

C

C

Ci
y

2

η

η

4

3

1

2

R−R

Figure 5.1: Proof of (5.8)

Consequently,

∫

C3

e−η2

dη =
1√
2

∫ R

−R

e−x2/2 dx −
∫

C2

e−η2

dη −
∫

C4

e−η2

dη.

It follows

lim
R→∞

∫

C3

e−η2

dη =
√

π

since

lim
R→∞

∫

Ck

e−η2

dη = 0, k = 2, 4.

The case n > 1 can be reduced to the one-dimensional case as follows. Set

η =
x√
2

+ i
y√
2

= (η1, . . . , ηn),
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where
ηl =

xl√
2

+ i
yl√
2
.

From dη = dη1 . . . dηl and

e−η2

= e−
∑n

l=1 η2
l =

n∏

l=1

e−η2
l

it follows ∫

Rn

e−η2

dη =
n∏

l=1

∫

Γl

e−η2
l dηl,

where for fixed y

Γl = {z ∈ C : z =
xl√
2

+ i
yl√
2
,−∞ < xl < +∞}.

2

There is a useful class of functions for which the integrals in the definition of
f̂ and f̃ exist.

For u ∈ C∞(Rn) we set

qj,k(u) := sup
Rn

{
(1 + |x|2)j/2|Dαu(x)| : |α| ≤ k

}
.

Definition. The Schwartz class of rapidely degreasing functions is

S(Rn) = {u ∈ C∞(Rn) : qj,k(u) < ∞ for any j, k ∈ N ∪ {0}}

This space is a Frechét space.

Proposition 5.3. Assume u ∈ S(Rn), then û and ũ ∈ S(Rn).

Proof. See [20], Chapter 1.2, for example, or an exercise.

5.1.1 Pseudodifferential operators

The properties of Fourier transform lead to a general theory for, at least
linear, partial differential or integral equations. In this subsection we define

Dk =
1

i

∂

∂xk

, k = 1, . . . , n,
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and for each multiindex α as in Subsection 3.5.1

Dα = Dα1
1 . . . Dαn

n .

That is,

Dα =
1

i|α|
∂|α|

∂xα1
1 . . . ∂xαn

n

.

Let

p(x,D) :=
∑

|α|≤m

aα(x)Dα,

where aα are given sufficiently regular functions, be a linear partial differential
of order m.

According to Theorem 5.1 and Proposition 5.3, we have, at least for
u ∈ S(Rn),

u(x) = (2π)−n/2

∫

Rn

eix·ξû(ξ) dξ,

which implies

Dαu(x) = (2π)−n/2

∫

Rn

eix·ξξαû(ξ) dξ.

Consequently

p(x,D)u(x) = (2π)−n/2

∫

Rn

eix·ξp(x, ξ)û(ξ) dξ, (5.9)

where

p(x, ξ) =
∑

|α|≤m

aα(x)ξα.

The right hand side of (5.9) makes sense also for more general functions
p(x, ξ), not only for polynomials.

Definition. The function p(x, ξ) is called symbol and

(Pu)(x) := (2π)−n/2

∫

Rn

eix·ξp(x, ξ)û(ξ) dξ

is said to be pseudodifferential operator.
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An important class of symbols for which the right hand side in this defini-
tion of a pseudodifferential operator is defined is Sm which is the subset of
p(x, ξ) ∈ C∞(Ω × R

n) such that

|Dβ
xDα

ξ p(x, ξ)| ≤ CK,α,β(p) (1 + |ξ|)m−|α|

for each compact K ⊂ Ω.

Above we have seen that linear differential operators define a class of pseu-
dodifferential operators. Even integral operators can be written (formally)
as pseudodifferential operators. Let

(Pu)(x) =

∫

textslRn

K(x, y)u(y) dy

be an integral operator. Then

(Pu)(x) = (2π)−n/2

∫

Rn

K(x, y)

∫

Rn

eix·ξξαû(ξ) dξ

= (2π)−n/2

∫

Rn

eix·ξ

(∫

Rn

ei(y−x)·ξK(x, y) dy

)
û(ξ).

That is, the symbol associated to the above integral operator is

p(x, ξ) =

∫

Rn

ei(y−x)·ξK(x, y) dy.
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5.2 Exercices

1. Show ∫

Rn

e−|y|2/2 dy = (2π)n/2.

2. Find a formal solution of Cauchy’s initial value problem for the wave
equation by using Fourier’s transformation.
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